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PREFACE

This book of problems is intended as a textbook for students at
higher educational institutions studying advanced course in physics.
Besides, because of the great number of simple problems it may be used
by students studying a general course in physics.

The book contains about 1900 problems with hints for solving the
most complicated ones.

For students’ convenience each chapter opens with a time-saving
summary of the principal formulas for the relevant area of physics. As a
rule the formulas are given without detailed explanations since a stu-
dent, starting solving a problem, is assumed to know the meaning of the
quantities appearing in the formulas. Explanatory notes are only given
in those cases when misunderstanding may arise.

All the formulas in the text and answers are in SI system, except in
Part Six, where the Gaussian system is used. Quantitative data and
answers are presented in accordance with the rules of approximation and
numerical accuracy.

The main physical constants and tables are summarised at the end of
the book.

The Periodic System of Elements is printed at the front end sheet
and the Table of Elementary Particles at the back sheet of the book.

In the present edition, some misprints are corrected, and a number
of problems are substituted by new ones, or the quantitative data in
them are changed or refined (1.273, 1.361, 2.189, 3.249, 3.97, 4.194 and
5.78).

In conclusion, the author wants to express his deep gratitude to col-
leagues from MIPhI and to readers who sent their remarks on some prob-
lems | helping thereby to improve the book.

I.E. Irodov
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" A FEW HINTS FOR SOLVING

THE PROBLEMS

1. First of all, look through the tables in the Appendix, for many
problems cannot be solved without them. Besides, the reference data

. quoted in the tables will make your work easier and save your time.

2. Begin the problem by recognizing its meaning and its formula-
tion. Make sure that the data given are sufficient for solving the
problem. Missing data can be found in the tables in the Appendix.
Wherever possible, draw a diagram elucidating the essence of the
problem; in many cases this simplifies both the search for a solution
and the solution itself.

3. Solve each problem, as a rule, in the general form, that is in
a letter notation, so that the quantity sought will be expressed in
the same terms as the given data. A solution in the general form is
particularly valuable since it makes clear the relationship between
the sought quantity and the given data. What is more, an answer ob-
tained in the general form allows one to make a fairly accurate judge-

‘ment on the correctness of the solution itself (see the next item).

4. Having obtained the solution in the general form, check to see
if it has the right dimensions. The wrong dimensions are an obvious
indication of a wrong solution. If possible, investigate the behaviour
of the solution in some extreme special cases. For example, whatever
the form of the expression for the gravitational force between two
extended bodies, it must turn into the well-known law of gravitational
interaction of mass points as the distance between the bodies increases.
Otherwise, it can be immediately inferred that the solution is wrong.

5. When starting calculations, remember that the numerical values
of physical quantities are always known only approximately. There-
fore, in calculations you should employ the rules for operating with
approximate numbers. In particular, in presenting the quantitative
data and answers strict attention should be paid to the rules of
approximation and numerical accuracy.

6. Having obtained the numerical answer, evaluate itsplausibil
ity. In some cases such an evaluation may disclose an error in the
result obtained. For example, a stone cannot be thrown by a man
over the distance of the order of 1 km, the velocity of a body cannot
surpass that of light in a vacuum, etc.



NOTATION

Vectors are written in boldface upright type, e.g., r, F; the same
letters printed in lightface italic type (r, F) denote the modulus of
a vector. ’

Unit vectors

i, j, k are the unit vectors of the Cartesian coordinates z, y, z (some-
times the unit vectors are denoted as e,, e, €,;),

€, €y, €, are the unit vectors of the cylindrical coordinates p, ¢, z,

n, t are the unit vectors of a normal and a tangent.

Mean values are taken in angle brackets ( ), e.g., (v), (P).

Symbols A, d, and 8 in front of quantities denote:
A, the finite increment of a quantity, e.g. Ar =1, —1,;; AU =
= U2 - Ulv
d, the differential (infinitesimal increment), e.g. dr, dU,
b, the elementary value of a quantity, e.g. 84, the elementary work.

Time derivative of an arbitrary function f is denoted by df/dt,
or by a dot over a letter, f.

Vector operator V (“nabla”). It is used to denote the following
operations:
Vi, the gradient of ¢ (grad o).
V.E, the divergence of E (div E),
V XE, the curl of E (curl E).

Integrals of any multiplicity are denoted by a single sign | and
differ only by the integration element: dV, a volume element, dS,
a surface element, and dr, a line element. The sign denotes an

integral over a closed surface, or around a closed loop.

PART ONE

PHYSICAL FUNDAMENTALS
OF MECHANICS

1.1. KINEMATICS

e Average vectors of velocity and acceleration of a point:
Ar Av

\

(v):—A_t—' (W)= —0, (1.1a)

where Ar is the displacement vector (an increment of a radius vector).
e Velocity and acceleration of a point:

dr dv
S

T w=It (1-1b)

v

e Acceleration of a point expressed in projections on the tangent and the
normal to a trajectory:

dv v2
Wy = d; , Wn :—I—{—_’ (11.C)
where R is the radius of curvature of the trajectory at the given point.
e Distance covered by a point:
s = S v dt, (1.1d)
where v is the modulus of the velocity vector of a point.
e Angular velocity and angular acceleration of a solid body:
_de __de
o=—r, b= (1.1e)

b e Relation between linear and angular quantities for a rotating solid
ody:

v = [er], w, = 0!R, |w.| = PR, (1.1.f)

where r is the radius vector of the considered point relative to an arbitrary point
on the rotation axis, and R is the distance from the rotation axis.

1.1. A motorboat going downstream overcame a raft at a point A4;
Tt = 60 min later it turned back and after some time passed the raft
at a distance I = 6.0 km from the point 4. Find the flow velocity
assuming the duty of the engine to be constant.

1.2. A point traversed half the distance with a velocity v,. The
remaining part of the distance was covered with velocity v; for half
the time, and with velocity v, for the other half of the time. Find
the mean velocity of the point averaged over the whole time of mo-
tion.



1.3. A car starts moving rectilinearly, first with acceleration w =
= 5.0 m/s? (the initial velocity is equal to zero), then uniformly, and
finally, decelerating at the same rate w, comes to a stop. The total
time of motion equals T = 25 s. The average velocity during that
time is equal to (v) = 72 km per hour. How long does the car move
uniformly?

1.4. A point moves rectilinearly in one direction. Fig. 1.1 shows

S,m =
20 —

/4 i/

S~k

Vi V4 a0 &S
Fig. 1.1.

the distance s traversed by the point as a function of the time ¢.
Using the plot find:

(a) the average velocity of the point during the time of motion;

(h) the maximum velocity;

(c) the time moment f, at which the instantaneous velocity is
equal to the mean velocity averaged over the first ¢, seconds.

1.5. Two particles, 7 and 2, move with constant velocities v, and
v,. At the initial moment their radius vectors are equal to r; and r,.
How must these four vectors be interrelated for thie particles to col-
lide?

1.6. A ship moves along the equator to the east with velocity
v, = 30 km/hour. The southeastern wind blows at an angle ¢ = 60°
to the equator with velocity v = 15 km/hour. Find the wind velocity
v’ relative to the ship and the angle ¢’ between the equator and the
wind direction in the reference frame fixed to the ship.

1.7. Two swimmers leave point A on one bank of the river to reach
point B lying right across on the other bank. One of them crosses
the river along the straight line AB while the other swims at right
angles to the stream and then walks the distance that he has been
carried away by the stream to get to point B. What was the velocity u
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of his walking if both swimmers reached the destination simulta-
neously? The stream velocity v, = 2.0 km/hour and the velocity v’
of each swimmer with respect to water equals 2.5 km per hour.

1.8. Two boats, 4 and B, move away from a buoy anchored at the
middle of a river along the mutually perpendicular straight lines:
the boat 4 along the river, and the boat B across the river. Having
moved off an equal distance from the buoy the boats returned.
Find the ratio of times of motion of boats t,/v 5 if the velocity of
sach boat with respect to water is 1 = 1.2 times greater than the
stream velocity.

1.9. A boat moves relative to water with a velocity which is n =
= 2.0 times less than the river flow velocity. At what angle to the
stream direction must the boat move to minimize drifting?

1.10. Two bodies were thrown simultaneously from the same point:
one, straight up, and the other, at an angle of 8 = 60° to the hori-
zontal. The initial velocity of each body is equal to vy, = 25 m/s.
Neglecting the air drag, find the distance between the bodies ¢t =
= 1.70 s later.

1.11. Two particles move in a uniform gravitational field with an
acceleration g. At the initial moment the particles were located at
one point and moved with velocities v; = 3.0 m/s and v, = 4.0 m/s
horizontally in opposite directions. Find the distance between the
particles at the moment when their velocity vectors become mutu-
ally perpendicular.

1.12. Three points are located at the vertices of an equilateral
triangle whose side equals a. They all start moving simultaneously
with velocity v constant in modulus, with the first point heading
continually for the second, the second for the third, and the third
for the first. How soon will the points converge?

1.13. Point 4 moves uniformly with velocity v so that the vector v
is continually “aimed” at point B which in its turn moves recti-
linearly and uniformly with velocity v <C v. At the initial moment of
time v_l_u and the points are separated by a distance /. How soon
will the points converge?

1.14. A train of length ! = 350 m starts moving rectilinearly with
constant acceleration w = 3.0-10~% m/s* ¢t = 30 s after the start
the locomotive headlight is switched on (event 1), and © = 60 s
after that event the tail signal light is switched on (event 2). Find the
distance between these events in the reference frames fixed to the
train and to the Earth. How and at what constant velocity V rela-
tive to the Earth must a certain reference frame K move for the two
events to occur in it at the same point?

1.15. An elevator car whose floor-to-ceiling distance is equal to
2.7 m starts ascending with constant acceleration 1.2 m/s%; 2.0 s
after the start a bolt begins falling from the ceiling of the car. Find:

(a) the bolt’s free fall time;

(b) the displacement and the distance covered by the bolt during
the free fall in the reference frame fixed to the elevator shaft.
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1.16. Two particles, 7 and 2, move with constant velocities
and v, along two mutually perpendicular straight lines toward the
intersection point O. At the moment ¢ = O the particles were located
at the distances /; and I, from the point O. How soon will the distance
between the particles become the smallest? What is it equal to?

1.17. From point A located on a highway (Fig. 1.2) one has to get
by car as soon as possible to point B located in the field at a distance 1
from the highway. It is known that the car moves in the field v
times slower than on the highway. At what distance from point D
one must turn off the highway?

1.18. A point travels along the z axis with a velocity whose pro-
jection v, is presented as a function of time by the plot in Fig. 1.3.

Uy
A ¢ y/ 7
© AN
N 0
N 1 21 3 4\3 6 /7t
~ -7
N
N\
N\, 5 _Z
Fig. 1.2. Fig. 1.3.

Assuming the coordinate of the point x = 0 at the moment ¢ = 0,
draw the approximate time dependence plots for the acceleration w,,
the z coordinate, and the distance covered s.

1.19. A point traversed half a circle of radius R = 160 c¢m during
time interval v = 10.0 s. Calculate the following quantities aver-
aged over that time:

(a) the mean velocity (v);

(b) the modulus of the mean velocity vector |(v)|;

(c) the modulus of the mean vector of the total acceleration |(w)]
if the point moved with constant tangent acceleration.

1.20. A radius vector of a particle varies with time ¢ as r =
= at (1 — at), where a is a constant vector and o is a positive factor.
Find:

f(a) the velocity v and the acceleration w of the particle as functions
of time;

(b) the time interval At taken by the particle to return to the ini-
tial points, and the distance s covered during that time.

1.21. At the moment ¢ = 0 a particle leaves the origin and moves
in the positive direction of the z axis. Its velocity varies with time
as v = vq (1 — t/t), where v, is the initial velocity vector whose
modulus equals v, = 10.0 cm/s; T = 5.0 s. Find:

(a) the z coordinate of the particle at the moments of time 6.0,
10, and 20 s;

(b) the moments of time when the particle is at the distance 10.0 cm
from the origin;
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(c) the distance s covered by the particle during the first 4.0 and
8.0 s; draw the approximate plot s (£).

1.22. The velocity of a particle moving in the positive direction
of the 2 axis varies as v = ccl/x, where oo is a positive constant.
Assuming that at the moment ¢ = O the particle was located at the
point z = 0, find:

(a) the time dependence of the velocity and the acceleration of the
particle;

(b) the mean velocity of the particle averaged over the time that
the particle takes to cover the first s metres of the path.

1.23. A point moves rectilinearly with deceleration whose modulus
depends on the velocity v of the particle as w = a}/ v, where a is a
positive constant. At the initial moment the velocity of the point
is equal to v,. What distance will it traverse before it stops? What
time will it take to cover that distance?

1.24. A radius vector of a point A4 relative to the origin varies with
time ¢t as r = ati — bt%, where a and b are positive constants, and i
and j are the unit vectors of the z and y axes. Find:

(a) the equation of the point's trajectory y (z); plot this function;

(b) the time dependence of the velocity v and acceleration w vec-
tors, as well as of the moduli of these quantities;

(c) the time dependence of the angle @ between the vectors w and v;

(d) the mean velocity vector averaged over the first ¢ seconds of
motion, and the modulus of this vector.

1.25. A point moves in the plane zy according to the law z = at,
y = at (1 — at), where a and o are positive constants, and ¢ is
time. Find:

(a) the equation of the point’s trajectory y (x); plot this function;

(b) the velocity v and the acceleration w of the point as functions
of time;

(c) the moment ¢, at which the velocity vector forms an angle n/4
with the acceleration vector. >

1.26. A point moves in the plane zy according to the law z =
= a sin ot,y = a (1 — cos ot), where a and o are positive constants.
Find:

(a) the distance s traversed by the point during the time =;

(b) the angle between the point’s velocity and acceleration vectors.

1.27. A particle moves in the plane zy with constant acceleration w
directed along the negative y axis. The equation of motion of the
particle has the form y = ax — bz*, where 2 and b are positive con-
stants. Find the velocity of the particle at the origin of coordinates.

1.28. A small body is thrown at an angle to the horizontal with
the initial velocity v,. Neglecting the air drag, find:

{a) the displacement of the body as a function of time r (¢);

(b) the mean velocity vector (v) averaged over the first ¢ seconds
and over the total time of motion.

1.29. A body is thrown from the surface of the Earth at an angle o
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to the horizontal with the initial velocity v,. Assuming the air drag
to be negligible, find:

(a) the time of motion;

(b) the maximum height of ascent and the horizontal range; at
what value of the angle a they will be equal to each other;

(c) the equation of trajectory y (), where y and z are displacements
of the body along the vertical and the horizontal respectively;

(d) the curvature radii of trajectory at its initial point and at its
peak.

1.30. Using the conditions of the foregoing problem, draw the ap-
proximate time dependence of moduli of the normal w, and tangent w,
acceleration vectors, as well as of the projection of the total accele-
ration vector w, on the velocity vector direction.

1.31. A ball starts falling with zero initial velocity on a smooth
inclined plane forming an angle o with the horizontal. Having fall-
en the distance %, the ball rebounds elastically off the inclined plane.
At what distance from the impact point will the ball rebound for
the second time?

1.32. A cannon and a target are 5.10 km apart and located at the
same level. How soon will the shell launched with the initial velocity
240 m/s reach the target in the absence of air drag?

1.33. A cannon fires successively two shells with velocity v, =
= 250 m/s; the first at the angle 6, = 60° and the second at the angle
8, = 45° to the horizontal, the azimuth being the same. Neglecting
the air drag, find the time interval between firings leading to the
collision of the shells.

1.34. A balloon starts rising from the surface of the Earth. The
ascension rate is constant and equal to v,. Due to the wind the bal-
loon gathers the horizontal velocity component v, = ay, where a
is a constant and y is the height of ascent. Find how the following
quantities depend on the height of ascent:

(a) the horizontal drift of the balloon z (y);

(b) the total, tangential, and normal accelerations of the balloon.

1.35. A particle moves in the plane zy with velocity v = ai + baj,
where i and j are the unit vectors of the z and y axes, and @ and b
are constants. At the initial moment of time the particle was located
at the point 2 = y = 0. Find:

(a) the equation of the particle’s trajectory y (z);

(b) the curvature radius of trajectory as a function of z.

1.36. A particle A moves in one direction along a given trajectory
with a tangential acceleration w, = at, where a is a constant vector
coinciding in direction with the z axis (Fig. 1.4), and 7 is a unit vector
coinciding in direction with the velocity vector at a given point.
Find how the velocity of the particle depends on z provided that its
velocity is negligible at the point x = 0.

1.37. A point moves along a circle with a velocity v = at, where
a = 0.50 m/s*>. Find the total acceleration of the point at the mo-
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ment when it covered the n-th (n = 0.10) fraction of the circle after
the beginning of motion.

1.38. A point moves with deceleration along the circle of radius R
so that at any moment of time its tangential and normal accelerations

7

Fig. 1.4.

are equal in moduli. At the initial moment ¢ = 0 the velocity of the
point equals v,. Find:

(a) the velocity of the point as a function of time and as a function
of the distance covered s;

(b) the total acceleration of the point as a function of velocity and
the distance covered.

1.39. A point moves along an arc of a circle of radius R. Its velocity

depends on the distance covered sasv = a)/s, where a is a constant.
Find the angle a between the vector of the total acceleration and
the vector of velocity as a function of s.

1.40. A particle moves along an arc of a circle of radius R according
to the law I = a sin wt, where [ is the displacement from the initial
position measured along the arc, and a and ® are constants. Assum-
ing R =1.00 m, a = 0.80 m, and & == 2.00 rad/s, find:

(a) the magnitude of the total acceleration of the particle at the
points I = 0 and ! = 4-q;

(b) the minimum value of the total acceleration w,,;, and the cor-
responding displacement [,,.

1.41. A point moves in the plane so that its tangential acceleration
w; == a, and its normal acceleration w, = bt*, where a and b are
positive constants, and ¢ is time. At the moment ¢ = 0 the point was
at rest. Find how the curvature radius R of the point’s trajectory and
the total acceleration w depend on the distance covered s.

1.42. A particle moves along the plane trajectory y (z) with velo-
city v whose modulus is constant. Find the acceleration of the par-
ticle at the point 2 = 0 and the curvature radius of the trajectory
at that point if the trajectory has the form

(a) of a parabola y = az?%

(b) of an ellipse (z/a)® + (y/b)? = 1; a and b are constants here.

1.43. A particle 4 moves along a circle of radius R = 50 cm so
that its radius vector r relative to the point O (Fig. 1.5) rotates with
the constant angular velocity @ = 0.40 rad/s. Find the modulus of

the velocity of the particle, and the modulus and direction of its
total acceleration.

2—9451 17



1.44. A wheel rotates around a stationary axis so that the rotation
angle ¢ varies with time as ¢ = at?, where a = 0.20 rad/s%. Find the
total acceleration w of the point 4 at the rim at the moment ¢ = 2.5s
if the linear velocity of the point 4 at this moment v = 0.65 m/s.

1.45. A shell acquires the initial velocity v = 320 m/s, having
made n = 2.0 turns inside the barrel whose length is equal to I =
= 2.0 m. Assuming that the shell moves
inside the barrel with a uniform accelera- A
tion, find the angular velocity of its axial
rotation at the moment when the shell
escapes the barrel.

1.46. A solid body rotates about a station- d
ary axis according to the law ¢ = at — O
— bt3, where a = 6.0 rad/s and b = 2.0
rad/s®. Find:

(a) the mean values of the angular velo-
city and angular acceleration averaged over Fio. 1.5
the time interval between ¢ = 0 and the g Lo
complete stop;

(b) the angular acceleration at the moment when the body stops.

1.47. A solid body starts rotating about a stationary axis with an
angular acceleration P = at, where a = 2.0-10-2 rad/s®. How soon
after the beginning of rotation will the total acceleration vector of
an arbitrary point of the body form an angle & = 60° with its velo-
city vector?

1.48. A solid body rotates with deceleration about a stationary
axis with an angular deceleration f OC V o, where o is its angular
velocity. Find the mean angular velocity of the body averaged over
the whole time of rotation if at the initial moment of time its angular
velocity was equal to .

1.49. A solid body rotates about a stationary axis so that its angu-
lar velocity depends on the rotation angle ¢ as ® = wy — a@, where
v, and a are positive constants. At the moment ¢ = O the angle
¢ = 0. Find the time dependence of

(a) the rotation angle;

(b) the angular velocity.

1.50. A solid body starts rotating about a stationary axis with an
angular acceleration § = B, cos ¢, where f, is a constant vector and ¢
is an angle of rotation from the initial position. Find the angular
velocity of the body as a function of the angle ¢. Draw the plot of
this dependence.

1.51. A rotating disc (Fig. 1.6) moves in the pesitive direction of
the z axis. Find the equation y (xr) describing the position of the
instantaneous axis of rotation, if at the initial moment the axis C
of the disc was located at the point O after which it moved

(a) with a constant velocity v, while the disc started rotating coun-
terclockwise with a constant angular acceleration P (the initial angu-
lar velocity is equal to zero);
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(b) with a constant acceleration w (and the zero initial velocity),
while the disc rotates counterclockwise with a constant angular velo-
city .

1y.52. A point A is located on the rim of a wheel of radius R =
= 0.50 m which rolls without slipping along a horizontal surface
with velocity v = 1.00 m/s. Find:

(a) the modulus and the direction of the acceleration vector of the

oint 4;

(b) the total distance s traversed by the point 4 between the two
successive moments at which it touches the surface.

1.53. A ball of radius R = 10.0 cm rolls without slipping down
an inclined plane so that its centre moves with constant acceleration

€§
)

Fig. 1.6. Fig. 1.7.

w = 2.50 cm/s% ¢ = 2.00 s after the beginning of motion its position
corresponds to that shown in Fig. 1.7. Find:

(a) the velocities of the points A, B, and O;

(b) the accelerations of these points.

1.54. A cylinder rolls without slipping over a horizontal plane.
The radius of the cylinder is equal to r. Find the curvature radii of
trajectories traced out by the points A and B (see Fig: 1.7).

1.55. Two solid bodies rotate about stationary mutually perpen-
dicular intersecting axes with constant angular velocities ®, =
= 3.0 rad/s and w, = 4.0 rad/s. Find the angular velocity and angu-
lar acceleration of one body relative to the other.

1.56. A solid body rotates with angular velocity ® = ati + b,
where a = 0.50 rad/s?, b = 0.060 rad/s?, and i and j are the unit
vectors of the z and y axes. Find:

(a) the moduli of the angular velocity and the angular acceleration
at the moment ¢ = 10.0 s;

(b) the angle between the vectors of the angular velocity and the
angular acceleration at that moment.

1.57. A round cone with half-angle & = 30° and the radius of the
base R = 5.0 cm rolls uniformly and without slipping over a hori-
zontal plane as shown in Fig. 1.8, The cone apex is hinged at the
point O which is on the same level with the point C, the cone base
centre. The velocity of peint C is v = 10.0 cm/s. Find the moduli of
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(a) the vector of the angular velocity of the cone and the angle it
forms with the vertical;
(b) the vector of the angular acceleration of the cone.
1,58. A solid body rotates with a constant angular velocity ®
t

= 0.50 rad/s about a horizontal axis AB. At the moment ?::6

the axis AB starts turning about the vertical with a constant angu-
lar acceleration f, = 0.410 rad/s®. Find the angular velocity and
angular acceleration of the body after ¢t = 3.5 s.

1.2, THE FUNDAMENTAL EQUATION OF DYNAMICS

e The fundamental equation of dynamics of a mass point (Newton's sec.
ond law):

av
m—d—t—— . (123)

e The same equation expressed in projections on the tangent and the
normal of the point’s trajectory:

dv ve
—Lt=F, mT=F"' (1.2b)

, The equation of dynamics of a point in the non-inertial reference frame
K’ which rotates with a constant angular velocity o about an axis translating
with an acceleration wy:

mw = F — mwg -+ meo?R + 2m [v'e], (1.2¢)

where R is the radius vector of the point relative to the axis of rotation of the
K’ frame.

1.59. An aerostat of mass m starts coming down with a constant
acceleration w. Determine the ballast mass to be dumped for the
aerostat to reach the upward acceleration of the same magnitude.
The air drag is to he neglected.

1.60. In the arrangement of Fig. 1.9 the masses m,, m,, and m,
of bodies are equal, the masses of the pulley and the threads are
negligible, and there is no friction in the pulley. Find the aceel-
eration w with which the body m, comes down, and the tension of
the thread binding together the bodies m, and m,, if the coefficient
of friction between these bodies and the horizontal surface is equal
to k. Consider possible cases.
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1.61. Two touching bars 7 and 2 are placed on an inclined plane
forming an angle a with the horizontal (Fig. 1.10). The masses of
the bars are equal to m, aud m,, and the coefficients of friction be-

Fig. 1.9. Fig. 1.10.

tween the inclined plane and these bars are equal to ky and k, re-
spectively, with &, > k,. Find:

(a) the force of interaction of the bars in the process of motion;

(b) the minimum value of the angle a at which the bars start slid-
ing down.

1.62. A small body was launched up an inclined plane set at an
angle o = 15° against the horizontal. Find the coefficient of friction,
if the time of the ascent of the body is n = 2.0 times less than the
time of its descent.

1.63. The following parameters of the arrangement of Fig. 1.11
are available: the angle o which the inclined plane forms with the
horizontal, and the coefficient of friction % between the body m,
and the inclined plane. The masses of the pulley and the threads,
as well as the friction in the pulley, are negligible. Assuming both
bodies to be motionless at the initial moment, find the mass ratio
m,/m, at which the body m,

(a) starts coming down;

(b) starts going up;

(c) is at rest.

1.64. The inclined plane of Fig. 1.11 forms an angle o = 30° with
the horizontal. The mass ratio m,/m, = n = 2/3. The coefficient of
friction between the body m, and the inclined plane is equal to k =
= 0.10. The masses of the pulley and the threads are negligible.
Find the magnitude and the direction of acceleration of the body m,
when the formerly stationary system of masses starts moving.

1.65. A plank of mass m, with a bar of mass m, placed on it lies on
a smooth horizontal plane. A horizontal force growing with time ¢
as F = at (a is constant) is applied to the bar. Find how the acceler-
ations of the plank w, and of the bar w, depend on ¢, if the coefficient
of friction between the plank and the bar is equal to k. Draw the ap-
proximate plots of these dependences.

1.66. A small body 4 starts sliding down from the top of a wedge
(Fig. 1.12) whose base is equal to ! = 2.10 m. The coefficient of
friction between the body and the wedge surface is & = 0.140. At
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what value of the angle a will the time of sliding be the least? What
will it be equal to?

1.67. A bar of mass m is pulled by means of a thread up ‘an inclined
plane forming an angle a with the horizontal (Fig. 1.13). The coef-

A

[+ 4
(——t_..l

Fig. 1.12.

ficient of friction is equal to k. Find the angle B which the thread
must form with the inclined plane for the tension of the thread to be
minimum. What is it equal to?

1.68. At the moment ¢ = O the force F = at is applied to a small

body of mass m resting on a smooth horizontal plane (z is a constant).

F

o

m
A

Fig. 1.14.

The permanent direction of this force forms an angle & with the hori-
zontal (Fig. 1.14). Find:

(a) the velocity of the body at the moment of its breaking off the
plane;

(b) the distance traversed by the body up to this moment.

1.69. A bar of mass m resting on a smooth horizontal plane starts
moving due to the force F = mg/3 of constant magnitude. In the
process of its rectilinear motion the angle a between the direction of
this force and the horizontal varies as o = as, where a is a constant,
and s is the distance traversed by the bar from its initial position.
Find the velocity of the bar as a function of the angle a.

1.70. A horizontal plane with the coefficient of friction k supports
two bodies: a bar and an electric motor with a battery on a block.
A thread attached to the bar is wound on the shaft of the electric
motor. The distance between the bar and the electric motor is equal
to I. When the motor is switched on, the bar, whose mass is twice
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as great as that of the other body, sta}'ts mm{ing with a constant ac-
celeration w. How soon will the pqdles collide? _
1.71. A pulley fixed to the ceiling of an elevator car carl('iles a
thread whose ends are attached to the l.oads of masses m, and m,.
The car starts going up with an acceleration w,. Assummg the rll}a.f;lsitlas
of the pulley and the thread, as well as the friction, to be negligible

ﬁn(c}i:) the acceleration of the load m, relative to the elevator shaft

d relative to the car; -
an(b) the force exerted by the pulley on the ceiling of the car.

1.72. Find the acceleration w of body 2 in the arrangement shown
in Fig. 1.15, if its mass is 1 times as great as the mass of bar 7 and

Ty

-
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Fig. 1.15. Fig. 1.16.

at the inclined plane forms with the horizontal is equ_al
:f)lea?n'lglllz 1;illais;stes of the pullI:ays and the threads, as well as the fric-
tion, are assumed to be negligible. Look into possible cases.

1.73. In the arrangement shown in Fig. 1.16 the bodies have masses
mo, my, my, the friction is absent, the masses of the pulleys and
the threads are negligible. Find the acceleration of the body m,.

i ossible cases.
Lof.l;/:nltx(l) tlge arrangement shown in Fig. 1.17 the mass of the r.od.M
exceeds the mass m of the ball. The ball has an opening permitting

v,

Fig. 1.17. Fig. 1.19.

it to slide along the thread with some friction. The mass of the pulley
and the friction in its axle are negligible. At the initial moment the
ball was located opposite the lower end of the rod. When set free,
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both bodies began moving with constant accelerations. Find the
friction force between the ball and the thread if z seconds after the
beginning of motion the ball got opposite the upper end of the rod.
The rod length equals 1.

1.75. In the arrangement shown in Fig. 1.18 the mass of ball 7
is n = 1.8 times as great as that of rod 2. The length of the latter is

= 100 cm. The masses of the pulleys and the threads, as well as
the friction, are negligible. The ball is set on the same level as the
lower end of the rod and then released. How soon will the ball be
opposite the upper end of the rod?

1.76. In the arrangement shown in Fig. 1.19 the mass of body 71
is 1 = 4.0 times as great as that of body 2. The height # = 20 c¢m.
The masses of the pulleys and the threads, as well as the friction,
are negligible. At a certain moment body 2 is released and the arrange-
ment set in motion. What is the maximum height that body 2 will
go up to?

1.77. Find the accelerations of rod 4 and wedge B in the arrange-
ment shown in Fig. 1.20 if the ratio of the mass of the wedge to that
of the rod equals 1, and the friction between all contact surfaces is
negligible.

1.78. In the arrangement shown in Fig. 1.21 the masses of the
wedge M and the body m are known. The appreciable friction exists

(s s

Fig. 1.20. Fig. 1.21.

only between the wedge and the body m, the friction coefficient being
equal to . The masses of the pulley and the thread are negligible.
Find the acceleration of the body m relative to the horizontal surface
on which the wedge slides.

1.79. What is the minimum acceleration with which bar 4 (Fig. 1.22)
should be shifted horizontally to keep bodies 7 and 2 stationary
relative to the bar? The masses of the bodies are equal, and the coef-
ficient of friction between the bar and the bodies is equal to k. The
masses of the pulley and the threads are negligible, the friction in
the pulley is absent.

1.80. Prism 7 with bar 2 of mass m placed on it gets a horizontal
acceleration w directed to the left (Fig. 1.23). At what maximum
value of this acceleration will the bar be still stationary relative to
the prism, if the coefficient of friction between them k<< cot o?
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. Prism I of mass m, and with angle o (see Fig. 1..23) rests on

a l11£iizontal surface. Bar 2 of mass m, is placed on the prism. A_ssum-
ing the friction to be negligible, find thg acceleration of the prlsfm.h
1.82. In the arrangement shown in Fig. 1.24 the masses m of the
bar and M of the wedge, as well as the wedge angle @, are known.

Fig. 1.22. Fig. 1.23.

The masses of the pulley and the thread are negligible. The friction
is absent. Find the acceleration of the wedge M. . .
1.83. A particle of mass m moves along a circle of radius R. Fin
the modulus of the average vector of the force acting on the particle
over the distance equal to a quarter of the

circle, if the particle moves
(a) uniformly with velocity v; ’
(b) with constant tangeqtlal acceleration
wy, the initial velocity being equal to zero.
1.84. An aircraft loops the loolp qf radius
= m with a constant velocity v = .
i 36801?111 per hour. Find the weight of the Fig. 1.24.
flyer of mass m =70 kg in the lower, upper,

d middle points of the loop. '
an1.énSl. A :nll)all sphere of mass m suspended by a thread is first taken

aside so that the thread forms the right angle with the vertical and
leased. Find: )
th?:) I‘fheatotal acceleration of the sphere and the thread tension sis_,
a function of 0, the angle of deflection of the thread fro.m the vertica t’
(b) the thread tension at the moment when the vertical componen
f th here's velocity is maximum; _
° (<t:) ihipangle 0 between the thread and the vert.lcal' at the moment
when the total acceleration vector of the sphere is directed horizon-
% i i tical plane so
1.86. A ball suspended by a thread swings in a ver plane
that its acceleratig)n values in the extreme .and the lowest position
are equal. Find the thread deflection angle in the extreme p051t1110n.
1.87. A small body A starts sliding off the top of a smootﬁ sp gri
of radius R. Find the angle 6 (Fig. 1.25) corresponding to tﬁe pcim
at which the body breaks off the sphere, as well as the break-off veloc-
i f the body. ]
ltyi.%&tAe deviZe (Fig. 1.26) consists of a smooth L-shaped rod lqcﬁ:
ed in a horizontal plane and a sleeve 4 of mass m attached by a weight-
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less spring to a point B. The spring stiffiness is equal to x. The whole
system rotates with a constant angular velocity ® about a vertical
axis passing through the point O. Find the elongation of the spring.
How is the result affected by the rotation direction?

1.89. A cyclist rides along the circumference of a circular horizontal
plane of radius R, the friction coefficient being dependent only on

LN
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Fig. 1.25. Fig. 1.26.

distance r from the centre O of the plane as k= k,(1—r/R), where
k, is a constant. Find the radius of the circle with the centre at the
point along which the cyclist can ride with the maximum velocity.
What is this velocity?

1.90. A car moves with a constant tangential acceleration w, =
= 0.62 m/s? along a horizontal surface circumscribing a circle of
radius R = 40 m. The coefficient of sliding friction between the
wheels of the car and the surface is £ = 0.20. What distance will
the car ride without sliding if at the initial moment of time its veloc-
ity is equal to zero?

1.91. A car moves uniformly along a horizontal sine curve y =
= ¢ sin (z/a), where a and o are certain constants. The coefficient of
friction between the wheels and the road is equal to k. At what veloc-
ity will the car ride without sliding?

1.92. A chain of mass m forming a circle of radius R is slipped on a ‘

smooth round cone with half-angle 6. Find the tension of the chain
if it rotates with a constant angular velocity » about a vertical axis
coinciding with the symmetry axis of the cone.

1.93. A fixed pulley carries a weightless thread with masses m,
and m, at its ends. There is friction between the thread and the pul-
ley. It is such that the thread starts slipping when the ratio m,/m, =
= 1},. Find:

(a) the friction coefficient;

(b) the acceleration of the masses when m,/m; =n > n,.

1.94. A particle of mass m moves along the internal smooth sur-
face of a vertical cylinder of radius R. Find the force with which the
particle acts on the cylinder wall if at the initial moment of time
its velocity equals v, and forms an angle a with the horizontal.
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1.95. Find the magnitude and direction of the force acting on the
particle of mass m during its motion in the plane zy according to the
law z = a sin ot, y = b cos wt, where a, b, and ® are constants.

1.96. A body of mass m is thrown at an angle to the horizontal
with the initial velocity v,. Assuming the air drag to be negligible,
find:

(a) the momentum increment Ap that the body acquires over the
first ¢ seconds of motion;

(b) the modulus of the momentum increment Ap during the total
time of motion.

1.97. At the moment ¢t = 0 a stationary particle of mass m expe-
riences a time-dependent force F = at (1 — ¢), where a is a constant
vector, T is the time during which the given force acts. Find:

(a) the momentum of the particle when the action of the force dis-
continued:

(b) the distance covered by the particle while the force acted.

1.98. At the moment ¢ = 0 a particle of mass m starts moving due
to a force F = F, sin wt, where F, and w are constants. Find the
distance covered by the particle as a function of ¢. Draw the approx-
imate plot of this function.

1.99. At the moment ¢ = 0 a particle of mass m starts moving due
to a force F = F, cos wt, where F, and v are constants. How long
will it be moving until it stops for the first time? What distance will
it traverse during that time? What is the maximum velocity of the
particle over this distance?

1.100. A motorboat of mass m moves along a lake with velocity v,.
At the moment ¢t = 0 the engine of the boat is shut down. Assuming
the resistance of water to be proportional to the velocity of the boat

= —rv, find:

(a) how long the motorboat moved with the shutdown engine;

(b) the velocity of the motorboat as a function of the distance cov-
ered with the shutdown engine, as well as the total distance covered
till the complete stop;

(c) the mean velocity of the motorboat over the time interval
(beginning with the moment ¢ = 0), during which its velocity de-
creases 1 times.

1.101. Having gone through a plank of thickness &, a bullet
changed its velocity from v, to v. Find the time of motion of the
bullet in the plank, assuming the resistance force to be proportional
to the square of the velocity.

1.102. A small bar starts sliding down an inclined plane forming
an angle a with the horizontal. The friction coefficient depends on
the distance z covered as k = az, where a is a constant. Find the
distance covered by the bar till it stops, and its maximum velocity
over this distance.

1.103. A body of mass m rests on a horizontal plane with the fric-
tion coefficient k. At the moment ¢ = 0 a horizontal force is applied
to it, which varies with time as F = at, where a is a constant vector.
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Find the distance traversed by the body during the first ¢ seconds after
the force action began.

1.104. A body of mass m is thrown straight up with velocity v,.
Find the velocity v* with which the body comes down if the air drag
equals kv, where k is a constant and v is the velocity of the body.

1.105. A particle of mass m moves
in a certain plane P due to a force
F whose magnitude is constant and
whose vector rotates in that plane with
a constant angular velocity ®. Assum-
ing the particle to be stationary at
the moment ¢ = 0, find:

(a) its velocity as a function of
time;

(b) the distance covered by the
particle between two successive stops,
and the mean velocity over this time.

1.106. A small disc A is placed on an inclined plane forming an
angle o with the horizontal (Fig. 1.27) and is imparted an initial
velocity v,. Find how the velocity of the disc depends on the angle ¢
if th;a friction coefficient ¥ = tan a and at the initial moment ¢, =
= n/2.

1.107. A chain of length [ is placed on a smooth spherical surface
of radius R with one of its ends fixed at the top of the sphere. What
will be the acceleration w of each element of the chain when its upper

end is released? It is assumed that the length of the chain l<—12nH.

1.108. A small body is placed on the top of a smooth sphere of
radius R. Then the sphere is imparted a constant acceleration w,
in the horizontal direction and the body begins sliding down. Find:

(a) the velocity of the body relative to the sphere at the moment of
break-off;

(b) the angle 6, between the vertical and the radius vector drawn

from the centre of the sphere to the break-off point; calculate 0, .

for wo = g.

1.109. A particle moves in a plane under the action of a force
which is always perpendicular to the particle’s velocity and depends
on a distance to a certain point on the plane as 1/r", where n is a
constant. At what value of r will the motion of the particle along
the circle be steady?

1.110. A sleeve A can slide freely along a smooth rod bent in the
shape of a half-circle of radius R (Fig. 1.28). The system is set in rota-
tion with a constant angular velocity @ about a vertical axis 00'.
Find the angle 8 corresponding to the steady position of the sleeve.

1.111. A rifle was aimed at the vertical line on the target located
precisely in the northern direction, and then fired. Assuming the air
drag to be negligible, find how much off the line, and in what direc-
tion, will the bullet hit the target. The shot was fired in the horizontal

28

direction at the latitude @ = 60°, the bullet velocity v = 900 m/s,
and the distance from the target equals s = 1.0 km.

1.112. A horizontal disc rotates with a constant angular velocity
w = 6.0 rad/s about a vertical axis passing through its centre. A
small body of mass m = 0.50 kg moves along a
diameter of the disc with a velocity v’ = 50 cm/s
which is constant relative to the disc. Find the
force that the disc exerts on the body at the
moment when it is located at the distance
r = 30 em from the rotation axis.

1.113. A horizontal smooth rod AB rotates
with a constant angular velocity ® = 2.00 rad/s
about a vertical axis passing through its end
A. A freely sliding sleeve of mass m = 0.50 kg
moves along the rod from the point 4 with the
initial velocity v, = 1.00 m/s. Find the Coriolis
force acting on the sleeve (in the reference frame
fixed to the rotating rod) at the moment when Fig. 1.28.
the sleeve is located at the distance r = 50 cm C
from the rotation axis.

1.114. A horizontal disc of radius R rotates with a constant angu-
lar velocity ® about a stationary vertical axis passing through its
edge. Along the circumference of the disc a particle of mass m moves
with a velocity that is constant relative to the disc. At the moment
when the particle is at the maximum distance from the rotation axis,
the resultant of the inertial forces F;, acting on the particle in the
reference frame fixed to the disc turns into zero. Find:

(a) the acceleration w’ of the particle relative to the disc;

(b) the dependence of F;, on the distance from the rotation axis.

1.115. A small body of mass m = 0.30 kg starts sliding down from
the top of a smooth sphere of radius R = 1.00 m. The sphere rotates
with a constant angular velocity w = 6.0 rad/s about a vertical
axis passing through its centre. Find the centrifugal force of inertia
and the Coriolis force at the moment when the body breaks off the
surface of the sphere in the reference frame fixed to the sphere.

1.116. A train of mass m = 2000 tons moves in the latitude ¢ =
= 60° North. Find:

(a) the magnitude and direction of the lateral force that the train
exerts on the rails if it moves along a meridian with a velocity v =
= 54 km per hour;

(b) in what direction and with what velocity the train should move
for the resultant of the inertial forces acting on the train in the ref-
erence frame fixed to the Earth to be equal to zero.

1.117. At the equator a stationary (relative to the Earth) body
falls down from the height 2 = 500 m. Assuming the air drag to be
negligible, find how much off the vertical, and in what direction,
the body will deviate when it hits the ground.
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1.3. LAWS OF CONSERVATION OF ENERGY, MOMENTUM, AND
ANGULAR MOMENTUM

e Work and power of the force F:
A= SFdrz SFsds, P = Fv, (1.3a)

e Increment of the kinetic energy of a particle:
T,—T,= A, (1.3h)
wher.elA is the work performed by the resultant of all the forces acting on the
particle.

e Work performed by the forces of a field is equal to the decrease of the
potential energy of a particle in the given field:

A=U — U, (1.3¢)

e Relationship between the force of a field and th tential
particle in the field: ® potential energy of a

F= — VU, (1.3d)

Le. the force is equal to the antigradient of the potential energy.
. o Increment of the total mechanical energy of a particle in a given poten-
tial field:

Ey—Ey=Aoxtr (1.3e)
where A, is the algebraic sum of works performed by all extraneous forces,
that is, by the forces not belonging to those of the giver field.

e Increment of the total mechanical energy of a system:

Eg_Eleext+Anoncons (1.3f)

int '
where E = T 4 U, and U is the inherent potential energy of the system.
e Law of momentum variation of a system:
dpldt = F, (1.3g)
where F is the resultant of all external forces.
e Equation of motion of the system’s centre of inertia:

dVC
m=C=F, (1.3h)
where F is the resultant of all external forces.
o Kinetic energy of a system
mv
’

T=T+

3 (1.3i)
where 7 is its kinetic energy in the system of centre of inertia.
e Equation of dynamics of a body with variahle mass:
av dm .
mTt—=F+d—t u, (1'31)

where u is the velocity of the separated (gai i
here u is y p (gained) substance relative to the body
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e Law of angular momentum variation of a system:

aM
=N (1.3k)

where M is the angular momentum of the system, and N is the total moment of
all external forces.
e Angular momentum of a system:

M= M+ [rcpl, (1.3

where M is its angular momentum in the system of the centre of inertia, r; is
the radius vector of the centre of inertia, and p is the momentum of the system.

1.118. A particle has shifted along some trajectory in the plane zy
from point 7 whose radius vector r, = i 4 2j to point 2 with the
radius vector r, = 2i — 3j. During that time the particle experi-
enced the action of certain forces, one of which being F = 3i + 4j.
Find the work performed by the force F. (Here ry, r,, and ¥ are given
in SI units).

1.119. A locomotive of mass m starts moving so that its velocity
varies according to the law v = al/s, where a is a constant, and s
is the distance covered. Find the total work performed by all the
forces which are acting on the locomotive during the first ¢ seconds
after the beginning of motion.

1.120. The kinetic energy of a particle moving along a circle of
radius R depends on the distance covered s as T' = as®, where a is
a constant. Find the force acting on the par-
ticle as a function of s.

1.121. A body of mass m was slowly hauled
up the hill (Fig. 1.29) by a force F which at
each point was directed along a tangent to the
trajectory. Find the work performed by this
force, if the height of the hill is A, the length
of its base [, and the coefficient of friction k.

1.122. A disc of mass m = 50 g slides with
the zero initial velocity down an inclined
plane set at an angle o = 30° to the horizontal;
having traversed the distance / = 50 cm along the horizontal plane,
the disc stops. Find the work performed by the friction forces over
the whole distance, assuming the friction coefficient & = 0.15 for
both inclined and horizontal planes.

1.123. Two bars of masses m, and m, connected by a non-deformed
light spring rest on a horizontal plane. The coefficient of friction

between the bars and the surface is equal to k. What minimum constant

force has to be applied in the horizontal direction to the bar of mass m,
in order to shift the other bar?

"1.124. A chain of mass m = 0.80 kg and length I = 1.5 m rests
on a rough-surfaced table so that one of its ends hangs over the edge.
The chain starts sliding off the table all by itself provided the over-
hanging part equals v = 1/3 of the chain length. What will be the
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total work performed by the friction forces acting on the chain by
the moment it slides completely off the table?

1.125. A body of mass m is thrown at an angle o to the horizontal
with the initial velocity v,. Find the mean power developed by gravity
over the whole time of motion of the body, and the instantaneous power
of gravity as a function of time.

1.126. A particle of mass m moves along a circle of radius R with
a normal acceleration varying with time as w, = at*, where a is
a constant. Find the time dependence of the power developed by all
the forces acting on the particle, and the mean value of this power
averaged over the first ¢ seconds after the beginning of motion.

1.127. A small body of mass m is located on a horizontal plane at
the point 0. The body acquires a horizontal velocity vy. Find:

(a) the mean power developed by the friction force during the
whole time of motion, if the friction coefficient &k = 0.27, m = 1.0 kg,
and v, = 1.5 m/s;

(b) the maximum instantaneous power developed by the friction
force, if the friction coefficient varies as £ = az, where o is a constant,
and z is the distance from the point O.

1.128. A small body of mass m = 0.10 kg moves in the reterence
frame rotating about a stationary axis with a constant angular veloc-
ity ® = 5.0 rad/s. What work does the centrifugal force of inertia
perform during the transfer of this body along an arbitrary path
from point 7 to point 2 which are located at the distances r; = 30 cm
and r, = 50 cm from the rotation axis?

1.129. A system consists of two springs connected in series and
having the stifiness coefficients k, and k,. Find the minimum work
to be performed in order to stretch this system by Al

1.130. A body of mass m is hauled from the Earth’s surface by
applying a force F varying with the height of ascent y as F = 2 (ay —
— 1) mg, where a is a positive constant. Find the work performed
by this force and the increment of the body's potential energy in
the gravitational field of the Earth over the first half of the ascent.

1.131. The potential energy of a particle in a certain field has the
form U = a/r® — b/r, where a and b are positive constants, r is the
distance from the centre of the field. Find:

(a) the value of r, corresponding to the equilibrium position of the
particle; examine whether this position is steady;

(b) the maximum magnitude of the attraction force; draw the
plots U () and F, (r) (the projections of the force on the radius vec-
tor r).

1.132. In a certain two-dimensional field of force the potential
energy of a particle has the form U = aa® 4 Py?, where @ and f
are positive constants whose magnitudes are different. Find out:

(a) whether this field is central;

(b) what is the shape of the equipotential surfaces and also of the
surfaces for which the magnitude of the vector of force /' = const.

1.133. There are two stationary fields of force F = ayi and F =
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= axi 1+ byj, where i and j are the unit vectors of the z and y axes,
and a and b are constants. Find out whether these fields are potential.

1.134. A body of mass m is pushed with the initial velocity v,
up an inclined plane set at an angle o to the horizontal. The friction
coefficient is equal to k. What distance will the body cover before it
stopspand what work do the friction forces perform over this dis-
tancer

1.135. A small disc A slides down with initial velocity equal to
zero from the top of a smooth hill of height H having a horizontal
portion (Fig. 1.30). What must be the height of the horizontal por-
tion A to ensure the maximum distance s covered by the disc? What
is it equal to?

1.136. A small body A starts sliding from the height 2 down an
inclined groove passing into a half-circle of radius ~/2 (Fig. 1.31).

A A

Fig. 1.30. Fig. 1.31.

Assuming the friction to be negligible, find the velocity of the body
at the highest point of its trajectory (after breaking off the groove).

1.137. A ball of mass m is suspended by a thread of length {. With
what minimum velocity has the point of suspension to be shifted
in the horizontal direction for the ball to move along the circle about
that point? What will be the tension of the thread at the moment it
will be passing the horizontal position?

1.138. A horizontal plane supports a stationary vertical cylinder
of radius R and a disc A attached to the cylinder by a horizontal
thread AB of length [, (Fig. 1.32, top view). An initial velocity v,
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Fig. 1.32. Fig. 1.33.

is imparted to the disc as shown in the figure. How long will it

move along the plane until it strikes against the cylinder? The fric-
tion is assumed to be absent.
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1.139. A smooth rubber cord of length [ whose coefficient of elas-
ticity is % is suspended by one end from the point O (Fig. 1.33).
The other end is fitted with a catch B. A small sleeve A of mass m
starts falling from the point 0. Neglecting the masses of the thread
and the catch, find the maximum elongation of the cord.

1.140. A small bar A resting on a smooth horizontal plane is at-
tached by threads to a point P (Fig. 1.34) and, by means of a weightless
pulley, to a weight B possessing the same mass as the bar itself.

0
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Fig. 1.34. Fig. 1.35.

Besides, the bar is also attached to a point O by means of a light non-
deformed spring of length /; = 50 cm and stiffness x = 5 mg/l,,
where m is the mass of the bar. The thread PA having been burned,
the bar starts moving. Find its velocity at the moment when it is
breaking off the plane.

1.141. A horizontal plane supports a plank with a bar of mass
m = 1.0 kg placed on it and attached by a light elastic non-de-
formed cord of length [, =40 cm to a point O (Fig. 1.35). The coef-
ficient of friction between the bar and the plank equals & = 0.20.
The plank is slowly shifted to the right until the bar starts sliding
over it. It occurs at the moment when the cord deviates from the
vertical by an angle 6 = 30°. Find the work that has been performed
by that moment by the friction force acting on the bar in the ref-
erence frame fixed to the plane.

1.142. A smooth light horizontal rod AB can rotate about a ver-
tical axis passing through its end A. The rod is fitted with a small
sleeve of mass m attached to the end 4 by a weightless spring of length
I, and stiffness x. What work must be performed to slowly get this
system going and reaching the angular velocity w?

1.143. A pulley fixed to the ceiling carries a thread with bodies of
masses m, and m, attached to its ends. The masses of the pulley and
the thread are negligible, friction is absent. Find the acceleration
wg of the centre of inertia of this system.

1.144. Two interacting particles form a closed system whose centre
of inertia is at rest. Fig. 1.36 illustrates the positions of both par-
ticles at a certain moment and the trajectory of the particle of mass m,.
Draw the trajectory of the particle of mass m, if m, = m,/2.
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1.145. A closed chain A of mass m = 0.36 kg is attached to a ver-
tical rotating shaft by means of a thread (Fig. 1.37), and rotates with
a constant angular velocity @ = 35 rad/s. The thread forms an angle
@ = 45° with the vertical. Find the distance between the chain’s
centre of gravity and the rotation axis, and the tension
of the thread. m,

1.146. A round cone A of mass m = 3.2 kg and half- e
angle a = 10° rolls uniformly and without slipping
along a round conical surface B so that its apex O re-
mains stationary (Fig. 1.38). The centre of gravity of
the cone A is at the same level as the point O and at a
distance [ = 17 cm from it. The cone’s axis moves y
with angular velocity . Find:

(a) the static friction force acting on the cone 4, Fig. 1.36.
if ® = 1.0 rad/s;

(b) at what values of @ the cone A will roll without
sliding, if the coefficient of friction between the surfaces is equal
to k = 0.25.

1.147. In the reference frame K two particles travel along the z
axis, one of mass m, with velocity v,, and the other of mass m, with
velocity v,. Find:

(a) the velocity V of the reference frame K’ in which the cumulative
kinetic energy of these particles is minimum;

(b) the cumulative kinetic energy of these particles in the K’
frame.

1.148. The reference frame, in which the centre of inertia of a given
system of particles is at rest, translates with a velocity V relative
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Fig. 1.37. Fig. 1.38.

to an inertial reference frame K. The mass of the system of particles
equals m, and the total energy of the system in the frame of the centre

of inertia is equal to E. Find the total energy E of this system of
particles in the reference frame K.

1.149. Two small discs of masses m, and m, interconnected by a
weightless spring rest on a smooth horizontal plane. The discs are
set in motion with initial velocities v, and v, whose directions are
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mutually perpendicular and lie in a horizontal plane. Find the total

energy E of this system in the frame of the centre of inertia.

1.150. A system consists of two small spheres of masses m; and m
interconnected by a weightless spring. At the moment z = 0 th;
spheres are set in motion with the initial velocities v, and v, after
which the system starts moving in the Earth’s uniform gravitational
field. Neglecting the air drag, find the time dependence of the total
momentum of this system in the process of motion and of the radius
vector of its centre of inertia relative to the initial position of the
centre.

1_.151. Two bars of masses m, and m, connected by a weightless
spring of stiffness » (Fig. 1.39) rest on a smooth horizontal plane.
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Bar 2 is shifted a small distance z to the left and then released. Find
the velocity of the centre of inertia of the system after bar 7 breaks
off the wall.

1.152. Two bars connected by a weightless spring of stifiness x
and length (in the non-deformed state) I, rest on a horizontal plane.
A constant horizontal force F starts acting on one of the bars as shown
in Fig. 1.40. Find the maximum and minimum distances between the
bars during the subsequent motion of the system, if the masses of
the bars are:

(a) equal;

(b) equal to m, and m,, and the force F is applied to the bar of
mass mg.

1.153. A system consists of two identical cubes, each of mass m,
linked together by the compressed weightless spring of stiffness %
(Fig. 1.41). The cubes are also connected by a thread
which is burned through at a certain moment. Find:

(a) at what values of Al, the initial compression
of the spring, the lower cube will bounce up after
the thread has been burned through:

(b) to what height 2 the centre of gravity of this
system will rise if the initial compression of the spring
Al = 7 mg/x.

1.154. Two identical buggies 7 and 2 with one man
in each move without friction due to inertia along
the parallel rails toward each other. When the buggies get opposite
each other, the men exchange their places by jumping in the direc-
tion perpendicular to the motion direction. As a consequence, buggy

Fig. 1.41.
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1 stops and buggy 2 keeps moving in the same direction, with its ve-
locity becoming equal to v. Find the initial velocities of the buggies
v, and v, if the mass of each buggy (without a man) equals M and
the mass of each man m.

1.155. Two identical buggies move one after the other due to inertia
(without friction) with the same velocity v,. A man of mass m rides
the rear buggy. At a certain moment the man jumps into the front
buggy with a velocity u relative to his buggy. Knowing that the
mass of each buggy is equal to M, find the velocities with which the
buggies will move after that.

" 1.156. Two men, each of mass m, stand on the edge of a stationary
buggy of mass M. Assuming the friction to be negligible, find the
velocity of the buggy after both men jump off with the same hori-

. zontal velocity u relative to the buggy: (1) simultaneously; (2) one

after the other. In what case will the velocity of the buggy be greater

~ and how many times?

1.157. A chain hangs on a thread and touches the surface of a table
by its lower end. Show that after the thread has been burned through,
the force exerted on the table by the falling part of the chain at any
moment is twice as great as the force of pressure exerted by the part
already resting on the table.

1.158. A steel ball of mass m = 50 g falls from the height 2 =
= 1.0 m on the horizontal surface of a massive slab. Find the cumu-
lative momentum that the ball imparts to the slab after numerous
bounces, if every impact decreases the velocity of the ball n = 1.25
times.

1.159. A raft of mass M with a man of mass m aboard stays motion-
less on the surface of a lake. The man moves a distance 1’ relative
to the raft with velocity v'(t) and then stops. Assuming the water
resistance to be negligible, find:

(a) the displacement of the raft I relative to the shore;

(b) the horizontal component of the force with which the man acted
on the raft during the motion.

1.160. A stationary pulley carries a rope whose one end supports
a ladder with a man and the other end the counterweight of mass M.
The man of mass m climbs up a distance 1’ with respect to the ladder
and then stops. Neglecting the mass of the rope and the friction in
the pulley axle, find the displacement 1 of the centre of inertia of
this system.

1.161. A cannon of mass M starts sliding freely down a smooth
inclined plane at an angle & to the horizontal. After the cannon cov-
ered the distance [, a shot was fired, the shell leaving the cannon in
the horizontal direction with a momentum p. As a consequence, the
cannon stopped. Assuming the mass of the shell to be negligible,
as compared to that of the cannon, determine the duration of the
shot.

1.162. A horizontally flying bullet of mass m gets stuck in a body
of mass M suspended by two identical threads of length I (Fig. 1.42).
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A
A ;da: result, the threads swerve through an angle 0. Assuming m <« M,

(a) the velocity of the bullet before striking the body;

(b) the fraction of the bullet’s initial kineti
into heat. ic energy that turned

1.163. A.body of mass M (Fig. 1.43) with a small disc of mass m
placed on it rests on a smooth horizontal plane. The disc is set in

"
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Fig. 1.43.

motion in the horizontal direction with velocity v. To what height
(relative to the initial level) will the disc rise after breaking off the
body M? The friction is assumed to be absent. -
.1.164. A small disc of mass m slides down a smooth hill of height %
without initial velocity and gets onto a plank of mass M lying on
m

M
Fig. 1.44.

the horizontal plane at the base of the hill (Fig. 1.44). Due to friction
between the disc and the plank the disc slows down and, beginning
with a pertain moment, moves in one piece with the plank.

(1) Find the total work performed by the friction forces in this
process.

(2) Can it be stated that the result obtained does not depend on
the choice of the reference frame?

1.165. A stone falls down without initial velocity from a height %
onto the Earth’s surface. The air drag assumed to be negligible, the
stone hits the ground with velocity v, = }/ 2gh relative to the Earth.
Obtain the same formula in terms of the reference frame “falling”
to the Earth with a constant velocity v,.

1.16§. A particle of mass 1.0 g moving with velocity v, = 3.0i —
— 2.0j experiences a perfectly inelastic collision with another par-
ticle of mass 2.0 g and velocity v, = 4.0 — 6.0k. Find the veloc-
ity of the formed particle (both the vector v and its modulus), if
the components of the vectors v, and v, are given in the SI units.
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1.167. Find the increment of the kinetic energy of the closed system
comprising two spheres of masses m, and m, due to their perfectly
inelastic collision, if the initial velocities of the spheres were equal
to v, and v,.

1.168. A particle of mass m, experienced a perfectly elastic col-
lision with a stationary particle of mass m, What fraction of the
kinetic energy does the striking particle lose, if

(a) it recoils at right angles to its original motion direction;

(b) the collision is a head-on one?

1.169. Particle 7 experiences a perfectly elastic collision with
a stationary particle 2. Determine their mass ratio, if

(a) after a head-on collision the particles fly apart in the opposite
directions with equal velocities;

(b) the particles fly apart symmetrically relative to the initial
motion direction of particle 7 with the angle of divergence 8 = 60°.

1.170. A ball moving translationally collides elastically with
another, stationary, ball of the same mass. At the moment of impact
the angle between the straight line passing through the centres of
the balls and the direction of the initial motion of the striking ball
is equal to o = 45°. Assuming the balls to be smooth, find the frac-
tion v of the kinetic energy of the striking ball that turned into poten-
tial energy at the moment of the maximum deformation.

1.171. A shell flying with velocity v = 500 m/s bursts into three
identical fragments so that the kinetic energy of the system increases
n = 1.5 times. What maximum velocity can one of the frag-
ments obtain?

1.172. Particle 7 moving with velocity v = 10 m/s experienced
a head-on collision with a stationary particle 2 of the same mass.
As a result of the collision, the kinetic energy of the system decreased
by m = 1.0%. Find the magnitude and direction of the velocity
of particle 7 after the collision.

1.173. A particle of mass m having collided with a stationary
particle of mass M deviated by an angle n/2 whereas the particle M
recoiled at an angle 8 = 30° to the direction of the initial motion
of the particle m. How much (in per cent) and in what way has the
kinetic energy of this system changed after the collision, if Mim =
= 5.0?

1.474. A closed system consists of two particles of masses m,
and m, which move at right angles to each other with velocities v,
and v,. Find:

(a) the momentum of each particle and

(b) the total kinetic energy of the two particles in the reference
frame fixed to their centre of inertia.

1.175. A particle of mass m, collides elastically with a stationary
particle of mass m, (my > m,). Find the maximum angle through
which the striking particle may deviate as a result of the collision.

1.176. Three identical discs A, B, and C (Fig. 1.45) rest on a smooth
horizontal plane. The disc A is set in motion with velocity v after
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which it experiences an elastic collision simultaneously with the
discs B and C. The distance between the centres of the latter discs
prior to the collision is 1 times greater than the diameter of each disc.
Find the velocity of the disc 4 after the
collision. At what value of n will the disc 8 7
A recoil after the collision; stop; move on? 4

1.177. A molecule collides with another, ( ) v
stationary, molecule of the same mass.
Demonstrate that the angle of divergence

(a) equals 90° when the collision is ideally
elastic; Fig. 1.45

(b) differs from 90° when the collision g LA
is inelastic.

1.178. A rocket ejects a steady jet whose velocity is equal to u
relative to the rocket. The gas discharge rate equals p kg/s. Demon-
strate that the rocket motion equation in this case takes the form

mw = F — pu,

where m is the mass of the rocket at a given moment, w is its accel-
eration, and F is the external force.

1.179. A rocket moves in the absence of external forces by eject-
ing a steady jet with velocity u constant relative to the rocket.
Find the velocity v of the rocket at the moment when its mass is
equal to m, if at the initial moment it possessed the mass m, and
its velocity was equal to zero. Make use of the formula given in the
foregoing problem.

1.180. Find the law according to which the mass of the rocket
varies with time, when the rocket moves with a constant accelera-
tion w, the external forces are absent, the gas escapes with a con-
stant velocity u relative to the rocket, and its mass at the initial
moment equals m,.

1.181. A spaceship of mass m, moves in the absence of external
forces with a constant velocity vo. To change the motion direction,
a jet engine is switched on. It starts ejecting a gas jet with velocity u
which is constant relative to the spaceship and directed at right
angles to the spaceship motion. The engine is shut down when the
mass of the spaceship decreases to m. Through what angle & did the
motion direction of the spaceship deviate due to the jet engine op-
eration?

1.182. A cart loaded with sand moves along a horizontal plane due
to a constant force I coinciding in direction with the cart’s velocity
vector. In the process, sand spills through a hole in the bottom with
a constant velocity p kg/s. Find the acceleration and the velocity of
the cart at the moment ¢, if at the initial moment ¢ = O the cart
with loaded sand had the mass m, and its velocity was equal to zero.
The friction is to be neglected.

1.183. A flatcar of mass m, starts moving to the right due to a
constant horizontal force F (Fig. 1.46). Sand spills on the flatcar
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from a stationary hopper. The velocity of loading is constant and
equal to p kg/s. Find the time dependence of the velocity and the
acceleration of the flatcar in the process of loading. The friction is
negligibly small.

1.184. A chain AB of length [ is located in a smooth horizontal
tube so that its fraction of length %2 hangs freely and touches the
surface of the table with its end B (Fig. 1.47). At a certain moment
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the end A of the chain is set free. With what velocity will this end
of the chain slip out of the tube?

1.185. The angular momentum of a particle relative to a certain
point O varies with time as M = a -+ ht?, where a and b are con-
stant vectors, with a_| b. Find the force moment N relative to the
point O acting on the particle when the angle between the vectors N
and M equals 45°

1.186. A ball of mass m is thrown at an angle a to the horizontal
with the initial velocity v,. Find the time dependence of the mag-
nitude of the ball’s angular momentum vector relative to the point
from which the ball is thrown. Find the angular momentum M at
the highest point of the trajectory if m = 130 g, o = 45°, and v, =
= 25 m/s. The air drag is to be neglected.

1.187. A disc A of mass m sliding over a smooth horizontal surface
with velocity v experiences a perfectly elastic collision with a smooth
stationary wall at a point O (Fig. 1.48). The
angle between the motion direction of the disc 4
and the normal of the wall is equal to . Find:

(a) the points relative to which the angular
momentum M of the disc remains constant in
this process;

(b) the magnitude of the increment of the
vector of the disc’sangular momentum relative
to the point O which is located in the plane
of the disc’s motion at the distance ! from the
point O.

1.188. A small ball of mass m suspended Fig. 1.48.
from the ceiling at a point O by a thread
of length ! moves along a horizontal circle with a constant angular
velocity ®. Relative to which points does the angular momentum
M of the ball remain constant? Find the magnitude of the increment
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of the vector of the ball’s angular momentum relative to the point
O picked up during half a revolution.

1.189. A ball of mass m falls down without initial velocity from
a height & over the Earth’s surface. Find the increment of the ball’s
angular momentum vector picked up during the time of falling (rela-
tive to the point O of the reference frame moving translationally in
a horizontal direction with a velocity V). The ball starts falling
from the point O. The air drag is to be neglected.

1.490. A smooth horizontal disc rotates with a constant angular
velocity o about a stationary vertical axis passing through its centre,
the point O. At a moment ¢ = 0 a disc is set in motion from that
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point with velocity v,. Find the angular momentum M (¢) of the
disc relative to the point O in the reference frame fixed to the disc.
Make sure that this angular momentum is caused by the Coriolis
force.

1.191. A particle moves along a closed trajectory in a central
field of force where the particle’s potential energy U = kr? (k is a
positive constant, r is the distance of the particle from the centre O
of the field). Find the mass of the particle if its minimum distance
from the point O equals ry and its velocity at the point farthest from O
equals v,.

1.192. A small ball is suspended from a point O by a light thread
of length . Then the ball is drawn aside so that the thread deviates
through an angle 8 from the vertical and set in motion in a hori-
zontal direction at right angles to the vertical plane in which the
thread is located. What is the initial velocity that has to be imparted
to the ball so that it could deviate through the maximum angle 71/2
in the process of motion? ‘

1.193. A small body of mass m tied to a non-stretchable thread
moves over a smooth horizontal plane. The other end of the thread
is being drawn into a hole O (Fig. 1.49) with a constant velocity.
Find the thread tension as a function of the distance r between the
body and the hole if at r = r, the angular velocity of the thread is
equal to w,.

1.194. A light non-stretchable thread is wound on a massive fixed
pulley of radius R. A small body of mass m is tied to the free end
of the thread. At a moment ¢ = O the system is released and starts
moving. Find its angular momentum relative to the pulley axle as
a function of time .
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1.195. A uniform sphere of mass m and radius R starts rolling
without slipping down an inclined plane at an angle @ to the hori-
zontal. Find the time dependence of the angular momentum of the
sphere relative to the point of contact at the initial moment. How
will the obtained result change in the case of a perfectly smooth
inclined plane?

1.196. A certain system of particles possesses a total momentum p
and an angular momentum M relative to a point O. Find its angular
momentum M’ relative to a point O whose position with respect to
the point O is determined by the radius vector ry. Find out when
the angular momentum of the system of particles does not depend
on the choice of the point O.

1.197. Demonstrate that the angular momentum M of the system
of particles relative to a point O of the reference frame K can be re-
presented as

M= M + [GCL

where M is its proper angular momentum (in the reference frame
moving translationally and fixed to the centre of inertia), ro is the
radius vector of the centre of inertia relative to the point O, p is the
total momentum of the system of particles in the reference frame K.

1.198. A ball of mass m moving with velocity v, experiences a
head-on elastic collision with one of the spheres of a stationary
rigid dumbbell as whown in Fig. 1.50. The mass of each sphere equals
m/2, and the distance between them is I. Disregarding the size of the

spheres, find the proper angular momentum M of the dumbbell after
the collision, i.e. the angular momentum in the reference frame mov-
ing translationally and fixed to the dumbbell’s centre of inertia.

1.199. Two small identical discs, each of mass m, lie on a smooth
horizontal plane. The discs are interconnected by a light non-de-
formed spring of length [, and stiffness %. At a certain moment one of
the discs is set in motion in a horizontal direction perpendicular
to the spring with velocity v,. Find the maximum elongation of the
spring in the process of motion, if it is known to be considerably
less than unity.

1.4, UNIVERSAL GRAYVITATION

e Universal gravitation law
re, (1.4a)
o The squares of the periods of revolution of any two planets around the
Sun are proportional to the cubes of the major semiaxes of their orbits (Kepler):
T3 g, (1.4b)
e Strength G and potential @ of the gravitational field of a mass point:

F=9

m m
G=—-‘y—ra—r, P=—V7. (1.4¢)
e Orbital and escape velocities: _
v=VeR, v.=V2n. (1.4d)
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1.200. A planet of mass M moves along a circle around the Sun
with velocity v = 34.9 km/s (relative to the heliocentric reference
frame). Find the period of revolution of this planet around the Sun.

1.201. The Jupiter’s period of revolution around the Sun is 12
times that of the Earth. Assuming the planetary orbits to be circular,
find:

(a) how many times the distance between the Jupiter and the Sun
exceeds that between the Earth and the Sun;

(b) the velocity and the acceleration of Jupiter in the heliocentric
reference frame.

1.202. A planet of mass M moves around the Sun along an ellipse
so that its minimum distance from the Sun is equal to r and the maxi-
mum distance to R. Making use of Kepler’s laws, find its period of
revolution around the Sun.

1.203. A small body starts falling onto the Sun from a distance
equal to the radius of the Earth’s orbit. The initial velocity of the
body is equal to zero in the heliocentric reference frame. Making
use of Kepler's laws, find how long the body will be falling.

1.204. Suppose we have made a model of the Solar system scaled
down in the ratio m but of materials of the same mean density as
the actual materials of the planets and the Sun. How will the orbital
periods of revolution of planetary models change in this case?

1.205. A double star is a system of two stars moving around the
centre of inertia of the system due to gravitation. Find the distance
between the components of the double star, if its total mass equals M
and the period of revolution T.

1.206. Find the potential energy of the gravitational interaction

(a) of two mass points of masses m; and m, located at a distance r
from each other;

(b) of a mass point of mass m and a thin uniform rod of mass M
and length , if they are located along a straight line at a distance a
from each other; also find the force of their interaction.

1.207. A planet of mass m moves along an ellipse around the Sun
so that its maximum and minimum distances from the Sun are equal
to r, and r, respectively. Find the angular momentum M of this
planet relative to the centre of the Sun.

1.208. Using the conservation laws, demonstrate that the total
mechanical energy of a planet of mass m moving around the Sun
along an ellipse depends only on its semi-major axis a. Find this
energy as a function of a.

1.209. A planet A moves along an elliptical orbit around the Sun.
At the moment when it was at the distance r, from the Sun its velo-
city ‘was equal to v, and the angle between the radius vector ry and
the velocity vector v, was equal to a. Find the maximum and mini-
mum distances that will separate this planet from the Sun during
its orbital motion.

1.210. A cosmic body A moves to the Sun with velocity v, (when
far from the Sun) and aiming parameter ! the arm of the vector v,
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relative to the centre of the Sun (Fig. 1.51). Find the minimum dis-
tance by which this body will get to the Sun.

1.211. A particle of mass m is located outside a uniform sphere of
mass M at a distance r from its centre. Find:

(a) the potential energy of gravitational interaction of the particle
and the sphere;

(b) the gravitational force which the sphere exerts on the particle.

1.212. Demonstrate that the gravitational force acting on a par-
ticle A inside a uniform spherical layer of matter is equal to zero.

1.213. A particle of mass m was transferred from the centre of the
base of a uniform hemisphere of mass M and radius R into infinity.

Uy

Fig. 1.51.

What work was performed in the process by the gravitational force
exerted on the particle by the hemisphere?

1.214. There is a uniform sphere of mass M and radius R. Find
the strength G and the potential ¢ of the gravitational field of this
sphere as a function of the distance r from its centre (with r << R
and r > R). Draw the approximate plots of the functions G (r)
and o ().

1.215. Inside a uniform sphere of density p there is a spherical
cavity whose centre is at a distance ! from the centre of the sphere.
Find the strength G of the gravitational field inside the cavity.

1.216. A uniform sphere has a mass M and radius R. Find the
pressure p inside the sphere, caused by gravitational compression,
as a function of the distance r from its centre. Evaluate p at the
centre of the Earth, assuming it to be a uniform sphere.

1.217. Find the proper potential energy of gravitational interac-
tion of matter forming

(a) a thin uniform spherical layer of mass m and radius R;

(b) a uniform sphere of mass m and radius R (make use of the answer
to Problem 1.214).

1.218. Two Earth’s satellites move in a common plane along cir-
cular orbits. The orbital radius of one satellite » = 7000 km while
that of the other satellite is Ar == 70 km less. What time interval
separates the periodic approaches of the satellites to each other over
the minimum distance?

1.219. Calculate the ratios of the following accelerations: the
acceleration w, due to the gravitational force on the Earth’s surface,
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the acceleration w, due to the centrifugal force of inertia on the
Earth’s equator, and the acceleration wg caused by the Sun to the
bodies on the Earth.

1.220. At what height over the Earth’s pole the free-fall accele-
ration decreases by one per cent; by half?

1.221. On the pole of the Earth a body is imparted velocity v,
directed vertically up. Knowing the radius of the Earth and the free-
fall acceleration on its surface, find the height to which the body
will ascend. The air drag is to be neglected.

1.222. An artificial satellite is launched into a circular orbit around
the Earth with velocity v relative to the reference frame moving trans-
lationally and fixed to the Earth’s rotation axis. Find the distance
from the satellite to the Earth’s surface. The radius of the Earth and
the free-fall acceleration on its surface are supposed to be known.

1.223. Calculate the radius of the circular orbit of a stationary
Earth’s satellite, which remains motionless with respect to its sur-
face. What are its velocity and acceleration in the inertial reference
frame fixed at a given moment to the centre of the Earth?

1.224. A satellite revolving in a circular equatorial orbit of ra-
dius R = 2.00-10* km from west to east appears over a certain point
at the equator every T = 11.6 hours. Using these data, calculate
the mass of the Earth. The gravitational constant is supposed to be
known.

1.225. A satellite revolves from east to west in a circular equatorial
orbit of radius B = 1.00.10* km around the Earth. Find the velocity
and the acceleration of the satellite in the reference frame fixed to
the Earth.

1.226. A satellite must move in the equatorial plane of the Earth
close to its surface either in the Earth’s rotation direction or against
it. Find how many times the kinetic energy of the satellite in the
latter case exceeds that in the former case (in the reference frame fixed
to the Earth).

1.227. An artificial satellite of the Moon revolves in a circular
orbit whose radius exceeds the radius of the Moon 7 times. In the
process of motion the satellite experiences a slight resistance due to
cosmic dust. Assuming the resistance force to depend on the velocity
of the satellite as F = auv?, where a is a constant, find how long the
satellite will stay in orbit until it falls onto the Moon’s surface.

1.228. Calculate the orbital and escape velocities for the Moon.
Compare the results obtained with the corresponding velocities for
the Earth.

1.229. A spaceship approaches the Moon along a parabolic trajec-
tory which is almost tangent to the Moon's surface. At the moment
of the maximum approach the brake rocket was fired for a short time
interval, and the spaceship was transferred into a circular orbit of
a Moon satellite. Find how the spaceship velocity modulus increased
in the process of braking.

1.230. A spaceship is launched into a circular orbit close to the
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Earth’s surface. What additional velocity has to be imparted to the
spaceship to overcome the gravitational pull?

1.231. At what distance from the centre of the Moon is the point
at which the strength of the resultant of the Earth’'s and Moon’s
gravitational fields is equal to zero? The Earth’s mass is assumed to
be = 81 times that of the Moon, and the distance between the cen-
ges of these planets n = 60 times greater than the radius of the Earth

1.232. What is the minimum work that has to be performed to

bring a spaceship of mass m = 2.0-103 kg from the surface of the Earth
to the Moon?

1.233. Find approximately the third cosmic velocity vg, i.e. the
minimum velocity that has to be imparted to a body relative to the
Earth’s surface to drive it out of the Solar system. The rotation of
the Earth about its own axis is to be neglected.

1.5. DYNAMICS OF A SOLID BODY
e Equation of dynamics of a solid body rotating about a stationary axis z:
I8, = N,, (1.5a)

where IV, is the algebraic sum of the moments of external forces relative to the
z axis.

e According to Steiner’'s theorem:
I =1, -+ ma2 (1.5b)
o Kinetic energy of a solid body rotating about a stationary axis:
1
T=—2— Tw2. (1.5¢)

e Work performed by external forces during the rotation of a solid body
about a stationary axis:

4= SN, do. (1.5d)
o Kinetic energy of a solid body in plane motion:
_ Tew? mvg
T=-f—t—=. (1.5€)

. o Relationship between the angular velocity @’ of gyroscope precession,
its angular momentum M equal to /o, and the moment N of the external forces:

[0’M] = N. (1.5f)

1.234. A thin uniform rod AB of mass m = 1.0 kg moves transla-
tionally with acceleration w == 2.0 m/s? due to two antiparallel forces
F, and F, (Fig. 1.52). The distance between the points at which these
forces are applied is equal to @ = 20 cm. Besides, it is known that
F, = 5.0 N. Find the length of the rod.

1.235. A force F = Ai + Bj is applied to a point whose radius
vector relative to the origin of coordinates O is equal to r = ai +
-+ bj, where a, b, A, B are constants, and i, j are the unit vectors of
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the z and y axes. Find the moment N and the arm [ of the force F
relative to the point O.

1.236. A force F, = Aj is applied to a point whose radius vector
r, = ai, while a force F, = Bi is applied to the point whose radius
vector r, = bj. Both radius vectors are determined relative to the
origin of coordinates O, i and j are the unit vectors of the z and y

P w ¥l
a
5
yi)
Fig. 1.52. Fig. 1.53.

axes, a, b, A, B are constants. Find the arm [ of the resultant force
relative to the point O.

1.237. Three forces are applied to a square plate as shown in
Fig. 1.53. Find the modulus, direction, and the point of application
of the resultant force, if this point is taken on the side BC.

1.238. Find the moment of inertia

(a) of a thin uniform rod relative to the axis which is perpendicular
to the rod and passes through its end, if the mass of the rod is m and
its length I;

(b) of a thin uniform rectangular plate relative to the axis passing
perpendicular to the plane of the plate through one of its vertices,
if the sides of the plate are equal to a and b, and its mass is m.

1.239. Calculate the moment of inertia

(a) of a copper uniform disc relative to the symmetry axis perpen-
dicular to the plane of the disc, if its thickness is equal to »=2.0 mm
and its radius to R = 100 mm; :

(b) of a uniform solid cone relative to its symmetry axis, if the
mass of the cone is equal to m and the radius of its base to R.

1.240. Demonstrate that in the case of a thin plate of arbitrary
shape there is the following relationship between the moments of
inertia: I, + I, = I, where subindices 1, 2, and 3 define three mu-
tually perpendicular axes passing through one point, with axes 1 and
2 lying in the plane of the plate. Using this relationship, find the
moment of inertia of a thin uniform round disc of radius R and mass
m relative to the axis coinciding with one of its diameters.

1.241. A uniform disc of radius R = 20 cm has a round cut as
shown in Fig. 1.54. The mass of the remaining (shaded) portion of the
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disc equals m = 7.3 kg. Find the moment of inertia of such a disc
relative to the axis passing through its centre of inertia and perpen-
dicular to the plane of the disc.

1.242. Using the formula for the moment of inertia of a uniform
sphere, find the moment of inertia of a thin spherical layer of mass
m and radius R relative to the axis passing through its centre.

1.243. A light thread with a body of mass m tied to its end is wound
on a uniform solid cylinder of mass M and radius R (Fig. 1.55). At
amoment ¢ = 0 the system is set in motion.
Assuming the friction in the axle of the cylin-
der to be negligible, find the time dependence
of

(a) the angular velocity of the cylinder;

(b) the kinetic energy of the whole system.

1.244. The ends of thin threads tightly
wound on the axle of radius r of the Maxwell
disc are attached to a horizontal bar. When
the disc unwinds, the bar is raised to keep the
disc at the same height. The mass of the disc
with the axle is equal to m, the moment of
inertia of the arrangement relative to its axis is /. Find the tension of
each thread and the acceleration of the bar.

1.245. A thin horizontal uniform rod AB of mass m and length I
can rotate freely about a vertical axis passing through its end 4.
At a certain moment the end B starts experiencing a constant force

Fig. 1.56.

F which is always perpendicular to the original position of the sta-
tionary rod and directed in a horizontal plane. Find the angular ve-
locity of the rod as a function of its rotation angle ¢ counted relative
to the initial position.

1.246. In the arrangement shown in Fig. 1.56 the mass of the uni-
form solid cylinder of radius R is equal to m and the masses of two
bodies are equal to m, and m,. The thread slipping and the friction
in the axle of the cylinder are supposed to be absent. Find the angular
acceleration of the cylinder and the ratio of tensions T,/T, of the
vertical sections of the thread in the process of motion.
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1.247. In the system shown in Fig. 1.57 the masses of the bodies
are known to be m; and m,, the coefficient of friction between the body
m, and the horizontal plane is equal to %, and a pulley of mass m
is assumed to be a uniform disc. The thread does not slip over the
pulley. At the moment t = 0 the body m, starts descending. Assum-
ing the mass of the thread and the friction in the axle of the pulley
to be negligible, find the work performed by the friction forces acting
on the body m, over the first ¢ seconds after the beginning of motion.

1.248. A uniform cylinder of radius R is spinned about its axis to
the angular velocity w, and then placed into a cornmer (Fig. 1.58).

7,

Fig. 1.57. Fig. 1.58.

The coefficient of friction between the corner walls and the cylinder
is equal to k. How many turns will the cylinder accomplish before
it stops?

1.249. A uniform disc of radius R is spinned to the angular velocity
o and then carefully placed on a horizontal surface. How long will
the disc be rotating on the surface if the friction coefficient is equal
to k? The pressure exerted by the disc on the surface can be regarded
as uniform.

1.250. A flywheel with the initial angular velocity o, decelerates
due to the forces whose moment relative to the axis is proportional
to the square root of its angular velocity. Find the mean angular
velocity of the flywheel averaged over the total deceleration time.

1.251. A uniform cylinder of radius R and mass M can rotate free-
ly about a stationary horizontal axis O (Fig. 1.59). A thin cord of
length ! and mass m is wound on the cylinder in a single layer. Find
the angular acceleration of the cylinder as a function of the length
z of the hanging part of the cord. The wound part of the cord is sup-
posed to have its centre of gravity oo the cylinder axis.

1.252. A uniform sphere of mass m and radius R rolls without
slipping down an inclined plane set at an angle o to the horizontal.
Find: :

(a) the magnitudes of the friction coefficient at which slipping
is absent;

(b) the kinetic energy of the sphere t seconds after the beginning
of motion.

1.253. A uniform cylinder of mass m = 8.0 kg and radius R =
= 1.3 c¢cm (Fig. 1.60) starts descending at a moment ¢ = 0 due to
gravity. Neglecting the mass of the thread, find:
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(a) the tension of each thread and the angular acceleration of the
cylinder;

(b) the time dependence of the instantaneous power developed by
the gravitational force.

1.254. Thin threads are tightly wound on the ends of a uniform
solid cylinder of mass m. The free ends of the threads are attached to

yrrtits

I

Fig. 1.59. Fig. 1.60.

the ceiling of an elevator car. The carstarts going up with an accelera-
tion w,. Find the acceleration w’ of the cylinder relative to the car and
the force F exerted by the cylinder on the ceiling (through the threads).

1.255. A spool with a thread wound on it is placed on an inclined
smooth plane set at an angle & = 30° to the horizontal. The free end
of the thread is attached to the wall as shown in Fig. 1.61. The mass
of .the spool is m = 200 g, its moment of inertia relative to its own
axis I = 0.45 g.m?, the radius of the wound thread layer r = 3.0 cm.
Find the acceleration of the spool axis.

1.256. A uniform solid cylinder of mass m rests on two horizontal
planks. A thread is wound on the cylinder. The hanging end of the
thread is pulled vertically down with a constant force F (Fig. 1.62).

Fipd the maximun} magnitude of the force F which still does not
bring about any sliding of the cylinder, if the coefficient of friction
between the cylinder and the planks is equal to k. What is the ac-
4*
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celeration w,,,, of the axis of the cylinder rolling down the inclined
plane?

1.257. A spool with thread wound on it, of mass m, rests on a rough
horizontal surface. Its moment of inertia relative to its own axis is
equal to / = ymR?, where y is a numerical factor, and R is the out-
side radius of the spool. The radius of the wound thread layer is equal

Fig. 1.63.

to r. The spool is pulled without sliding by the thread with a constant
force F directed at an angle « to the horizontal (Fig. 1.63). Find:

(a) the projection of the acceleration vector of the spool axis on the
z-axis;

(b) the work performed by the force F during the first ¢ seconds af-
ter the beginning of motion.

1.258. The arrangement shown in Fig. 1.64 consists of two identical
uniform solid cylinders, each of mass m, on which two light threads

are wound symmetrically. Find the tension of each thread in the pro-
cess of motion. The friction in the axle of the upper cylinder is as-
sumed to be absent.

1.259. In the arrangement shown in Fig. 1.65 a weight A possesses
mass m. a pulley B possesses mass M. Also known are the moment of
inertia I of the pulley relative to its axis and the radii of the pulley
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R and 2R. The mass of the threads is negligible. Find the accelera-
tion of the weight A after the system is set free.

1.260. A uniform solid cylinder Aof mass m, can freely rotate about
a horizontal axis fixed to a mount B of mass m, (Fig. 1.66). A con-
stant horizontal force F is applied to the end K of a light thread tight-
ly wound on the cylinder. The fric-
tion between the mount and the sup-
porting horizontal plane is assumed
to be absent. Find:

(a) the acceleration of the point K;

(b) the kinetic energy of this sys-

tem ¢t seconds after the beginning of & F

motion. llllddddd
1.261. A plank of mass m, witha

uniform sphere of mass m, placed on Fig. 1.66.

it rests on a smooth horizontal plane.

A constant horizontal force F is applied to the plank. With what
accelerations will the plank and the centre of the sphere move pro-
vided there is no sliding between the plank and the sphere?

1.262. A uniform solid cylinder of mass m and radius R is set in
rotation about its axis with an angular velocity g, then lowered with
its lateral surface onto a horizontal plane and released. The coeffi-
cient of friction between the cylinder and the plane is equal to k.
Find:

(a) how long the cylinder will move with sliding;

(b) the total work performed by the sliding friction force acting
on the cylinder.

1.263. A uniform ball of radius r rolls without slipping down from
the top of a sphere of radius R. Find the angular velocity of the ball
at the moment it breaks off the sphere. The initial velocity of the
ball is negligible. .

1.264. A uniform solid cylinder of radius R = 15 cm rolls over a
horizontal plane passing into an inclined plane forming an angle

Fig. 1.67. Fig. 1.68.

a = 30° with the horizontal (Fig. 1.67). Find the maximum value of
the velocity v, which still permits the cylinder to roll onto the inclined
plane section without a jump. The sliding is assumed to be absent.
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1.265. A small body 4 is fixed to the inside of a thin rigi
. 3 in rigid ho f
ra_d1u§ R and mass equal to that of the body 4. The hoop roglls wit%%gt
shpgmg over a horizontal plane; at the moments when the body 4
gets into the lower position, the centre of the hoop moves with velocity

Fig. 1.69.

é;r(;g(glg. 1.68). At what values of v, will the hoop move without bounc-

1.266.‘ Determine the kinetic energy of a tractor crawler belt of
mass m if the tractor moves with velocity v (Fig. 1.69).
ingi.%)?zz; }; lﬁnlf'ormtSIl)hefe of mass m and radius r rolls without slid-

orizonta ane, rotating abou i
(Fig. 1.70). In the procegs,the centre gof thet ? horizontal axle 04
sphere moves with velocity v along a circle
of radius R. Find the kinetic energy of the
sphere.

1.268. Demonstrate that in the reference
frame rotating with a constant angular
velocity @ about a stationary axis a body
of mass m experiences the resultant

(a) centrifugal force of inertia F, =
= mo?R;, where R. is the radius vector
of the body’s centre of inertia relative to
the rotation axis;

(b) Coriolis force F,, = 2m [vcw], where
ve is the velocity of the body’s centre of Fig. 1.71
1nerti§ in the rotating reference frame. o

12()9 A midpoint of a thin uniform rod AB of mass m and length
lis .I'lg'ldl}" fixed to a rotation axle 0O’ as shown in Fig. 1.71. The
rod is set into rotation with a constant angular velocity w. Find the
res_ultant' moment of the centrifugal forces of inertia relative to the
point C in the yeference frame fixed to the axle OO’ and to the rod.
- 1.270. A conical pendulum, a thin uniform rod of length I and
Igja(stiénl,l rcI))Zates élniff(;i"mly gbout a vertical axis with angular velocity

pper end of the rod is hi i :
rod o qbpor end of t s hinged). Find the angle 8 between the

’1.2‘71. A unl.form cube with edge a rests on a horizontal plane whose
frlctlgn coefficient equals k. The cube is set in motion with an initial
velocily, travels some distance over the plane and comes to a stand-
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still. Explain the disappearance of the angular momentum of the
cube relative to the axis lying in the plane at right angles to the
cube’s motion direction. Find the distance between the resultants of
gravitational forces and the reaction forces exerted by the support-
ing plane.

1.272. A smooth uniform rod AB of mass M and length ! rotates
freely with an angular velocity ®, in a horizontal plane about a sta-
tionary vertical axis passing through its end A. A small sleeve of
mass m starts sliding along the rod from the point A. Find the veloc-
ity v’ of the sleeve relative to the rod at the moment it reaches its
other end B.

1.273. A uniform rod of mass m = 5.0 kg and length I = 90 cm
rests on a smooth horizontal surface. One of the ends of the rod is struck
with the impulse J/ = 3.0 N-s in a horizontal direction perpendicular to
the rod. As a result, the rod obtains the momentum p=3.0 N-s. Find
the force with which one half of the rod will act on the other in
the process of motion.

1.274. A thin uniform square plate with side ! and mass M can
rotate freely about a stationary vertical axis coinciding with one of
its sides. A small ball of mass m flying with velocity v at right angles
to the plate strikes elastically the centre of it. Find:

(a) the velocity of the ball v’ after the impact;

(b) the horizontal component of the resultant force which the axis
will exert on the plate after the impact.

1.275. A vertically oriented uniform rod of mass M and length I
can rotate about its upper end. A horizontally flying bullet of mass
m strikes the lower end of the rod and gets stuck in it; as a result, the
rod swings through an angle a. Assuming that m < M, find:

(a) the velocity of the flying bullet;

(b) the momentum increment in the system “bullet-rod” during
the impact; what causes the change of that momentum,;

(c) at what distance z from the upper end of the rod the bullet must
strike for the momentum of the system “bullet-rod” to remain con-
stant during the impact.

1.276. A horizontally oriented uniform disc of mass M and radius
R rotates freely about a stationary vertical axis passing through its
centre. The disc has a radial guide along which can slide without
friction a small body of mass m. A light thread running down through
the hollow axle of the disc is tied to the body. Initially the body
was located at the edge of the disc and the whole system rotated with
an angular velocity wo. Then by means of a force F applied to the
lower end of the thread the body was slowly pulled to the rotation
axis. Find:

(a) the angular velocity of the system in its final state;

(b) the work performed by the force F.

1.277. A man of mass m, stands on the edge of a horizontal uni-
form disc of mass m, and radius R which is capable of rotating freely
about a stationary vertical axis passing through its centre. At a cer-

55



tain moment the man starts moving along the edge of the disc; he
shifts over an angle ¢’ relative to the disc and then stops. In the pro-
cess of motion the velocity of the man varies with time as v" (¢).
Assuming the dimensions of the man to be negligible, find:

(a) the angle through which the disc had turned by the moment the
man stopped;

(b) the force moment (relative to the rotation axis) with which
the man acted on the disc in the process of motion.

1.278. Two horizontal discs rotate freely about a vertical axis pass-
ing through their centres. The moments of inertia of the discs relative
to this axis are equal to I, and I,, and the angular velocities to ,
and ®,. When the upper disc fell on the lower one, both discs began
rotating, after some time, as a single whole (due to friction). Find:

(a) the steady-state angular rotation velocity of the discs;

(b) the work performed by the friction forces in this process.

1.279. A small disc and a thin uniform rod of length !/, whose mass
is m times greater than the mass of the disc, lie on a smooth horizon-
tal plane. The disc is set in motion, in horizontal direction and per-
pendicular to the rod, with velocity v, after which it elastically
collides with the end of the rod. Find
the velocity of the disc and the angu- 0
lar velocity of the rod after the colli- (8
sion. At what value of 7 will the
velocity of the disc after the colli-
sion be equal to zero? reverse its di-
rection?

1.280. A stationary platform P l [ [ ’
which can rotate freely about a ver- |
tical axis (Fig. 1.72) supports a motor M :
and a balance weight N. The mo- Z
ment of inertia of the platform 0
with the motor and the balance weight
relative to this axis is equal to /. A
light frame is fixed to the motor’s shaft with a uniform sphere 4 rotat-
ing freely with an angular velocity ®, about a shaft BB’ coincid-
ing with the axis OO’. The moment of inertia of the sphere relative
to the rotation axis is equal to /,. Find: .

(a) the work performed by the motor in turning the shaft BB’
through 90°; through 180°;

(b) the moment of external forces which maintains the axis of the
arrangement in the vertical position after the motor turns the shaft

BB’ through 90°.

1.281. A horizontally oriented uniform rod AR of mass m =
= 1.40 kg and length I, = 100 cm rotates freely about a stationary
vertical axis OO’ passing through its end A. The point A is located
at the middle of the axis OO’ whose length is equal to [ = 55 c¢m.
At what angular velocity of the rod the horizontal component of the
force acting on the lower end of the axis OO0’ is equal to zero? What

V4

HHWP]!

Fig. 1.72.
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is in this case the horizontal component of the force acting on the
upper end of the axis?

1.282. The middle of a uniform rod of mass m and length [ is rig-
idly fixed to a vertical axis OO’ so that the angle between the rod
and the axis is equal to 0 (see Fig. 1.71). The ends of the axis OO’ are
provided with bearings. The system rotates without friction with an
angular velocity ®. Find:

(a) the magnitude and direction of the rod’s angular momentum
M relative to the point C, as well as its angular momentum relative to
the rotation axis; ) .

(b) how much the modulus of the vector M relative to the point
C increases during a half-turn; o

(c) the moment of external forces N acting on the axle OO’ in
the process of rotation.

1.283. A top of mass m = 0.50 kg, whose axis is tilted by an angle

= 30° to the vertical, precesses due to gravity. The moment of
inertia of the top relative to its symmetry axis is equal to I =
= 2.0 g-m?, the angular velocity of rotation about that axis is equal
to ® = 350 rad/s, the distance from the point of rest to the centre of
inertia of the top is [ = 10 cm. Find:

(a) the angular velocity of the top’s precession;

(b) the magnitude and direction of the horizontal component of
the reaction force acting on the top at the point of rest.

1.284. A gyroscope, a uniform disc of radius R = 5.0 cm at the
end of a rod of length I = 10 ¢cm (Fig. 1.73), is mounted on the floor
of an elevator car going up with a constant accel-
eration w = 2.0 m/s®. The other end of the rod
is hinged at the point O. The gyroscope preces- < 1
ses with an angular velocity »n = 0.5 rps.

Neglecting the friction and the mass of the rod,
find the proper angular velocity of the disc.

1.285. A top of mass m = 1.0 kg and moment A
of inertia relative to its own axis / = 4.0 g-m? Fig. 1.73.
spins with an angular  velocity o =
= 310 rad/s. Its point of rest is located on a block which is shifted
in a horizontal direction with a constant acceleration w = 1.0 m/s%.
The distance between the point of rest and the centre of inertia of the
top equals [ = 10 cm. Find the magnitude and direction of the an-
gular velocity of precession ®'.

1.286. A uniform sphere of mass m = 5.0 kg and radius R =
= 6.0 cm rotates with an angular velocity ® = 1250 rad/s about
a horizontal axle passing through its centre and fixed on the mount-
ing base by means of bearings. The distance between the bearings
equals I = 15 cm. The base is set in rotation about a vertical axis
with an angular velocity o’ = 5.0 rad/s. Find the modulus and di-
rection of the gyroscopic forces.

1.287. A cylindrical disc of a gyroscope of mass m = 15 kg and
radius r = 5.0 cm spins with an angular velocity = 330 rad/s.
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The distance between the bearings in which the axle of the disc is
mounted is equal to I = 15 cm. The axle is forced to oscillate about
a horizontal axis with a period 7 = 1.0 s and amplitude ¢,, = 20°.
Find the maximum value of the gyroscopic forces exerted by the axle
on the bearings.

1.288. A ship moves with velocity v = 36 km per hour along an
arc of a circle of radius R = 200 m. Find the moment of the Zyroscop-
ic forces exerted on the bearings by the shaft with a flywheel whose
moment of inertia relative to the rotation axis equals I =
= 3.8-10° kg-m? and whose rotation velocity n = 300 rpm. The
rotation axis is oriented along the length of the ship.

1.289. A locomotive is propelled by a turbine whose axle is paral-
lel to the axes of wheels. The turbine’s rotation direction coincides
with that of wheels. The moment of inertia of the turbine rotor rel-
ative to its own axis is equal to / = 240 kg-m?. Find the additional
force exerted by the gyroscopic forces on the rails when the locomo-
tive moves along a circle of radius R = 250 m with velocity v =
= 50 km per hour. The gauge is equal to I = 1.5 m. The angular
velocity of the turbine equals n = 1500 rpm.

1.6. ELASTIC DEFORMATIONS OF A SOLID BODY

e Relation between tensile (compressive) strain & and stress o:
e = o/E, (1.6a)

where E 18 Young's modulus.

o Relation between lateral compressive (tensile) strain ¢’ and longitudi-
nal tensile (compressive) strain e:

g = —Me, (1.6b)

where p is Poisson’s ratio.

e Relation between shear strain y and tangential stress T:

y = 1/G, ‘ (1.8¢)
where G is shear modulus.
o Compressibility:
1 dv
p= BRArTE (1.6d)

e Volume density of elastic strain energy:

u= Ee2/2, u= Gy*/2. (1.6e)
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1.290. What pressure has to be applied to the ends of a steel cyl-
inder to keep its length constant on raising its temperature by 100 °C?

1.291. What internal pressure (in the absence of an external pres-
sure) can be sustained

(a) by a glass tube; (b) by a glass spherical flask, if in both cases
the wall thickness is equal to Ar = 1.0 mm and the radius of the
tube and the flask equals r = 25 mm?

1.292. A horizontally oriented copper rod of length { = 1.0 m
is rotated about a vertical axis passing through its middle. What
is the number of rps at which this rod ruptures?

1.293. A ring of radius r = 25 cm made of lead wire is rotated
about a stationary vertical axis passing through its centre and per-
pendicular to the plane of the ring. What is the number of rps at
which the ring ruptures?

1.294. A steel wire of diameter d = 1.0 mm is stretched horizon-
tally between two clamps located at the distance ! = 2.0 m from
each other. A weight of mass m = 0.25 kg is suspended from the mid-
point O of the wire. What will the resulting descent of the point O
be in centimetres?

1.295. A uniform elastic plank moves over a smooth horizontal
plane due to a constant force F, distributed uniformly over the end
face. The surface of the end face is equal to S, and Young's modulus
of the material to £. Find the compressive strain of the plank in the
direction of the acting force.

1.296. A thin uniform copper rod of length ! and mass m rotates
uniformly with an angular velocity ® in a horizontal plane about a
vertical axis passing through one of its ends. Determine the tension
in the rod as a function of the distance r from the rotation axis. Find
the elongation of the rod.

1.297. A solid copper cylinder of length I = 65 cm is placed on a
horizontal surface and subjected to a vertical compressive force
F = 1000 N directed downward and distributed uniformly over the
end face. What will be the resulting change of the volume of the
cylinder in cuhic millimetres?

1.298. A copper rod of length ! is suspended from the ceiling by one
of its ends. Find:

(a) the elongation Al of the rod due to its own weight;

(b) the relative increment of its volume AV/V.

1.299. A bar made of material whose Young's modulus is equal to
E and Poisson’s ratio to p is subjected to the hydrostatic pressure
p. Find:

(a) the fractional decrement of its volume;

(b) the relationship between the compressibility p and the elastic
constants £ and p

Show that Poisson’s ratio p cannot exceed 1/2.

1.300. One end of a steel rectangular girder is embedded into a
wall (Fig. 1.74). Due to gravity it sags slightly. Find the radius of
curvature of the neutral layer (see the dotted line in the figure) in
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the vicinity of the point O if the length of the protruding section of

the girder is equal to ! = 6.0 m and the thickness of the girder equals
= 10 cm.

1.301. The bending of an elastic rod is described by the elastic
curve passing through centres of gravity of rod’s cross-sections. At
small bendings the equation of this curve takes the form

N (.’IJ) - EI dzz y
where N (z) is the bending moment of the elastic forces in the cross-

section corresponding to the z coordinate, £ is Young’s modulus,
I is the moment of inertia of the cross-section relative to the axis pass-

ing through the neutral layer (I = SzzdS, Fig. 1.75).

Suppose one end of a steel rod of a square cross-section with side
a is embedded into a wall, the protruding section being of length

as ao 2

z Neutral \; A
layer % A
4

Fig. 1.75. Fig. 1.76.

(Fig. 1.76). Assuming the mass of the rod to be negligible, find the
shape of the elastic curve and the deflection of the rod A, if its end A
experiences

(a) the bending moment of the couple N

(b) a force F oriented along the y axis.

1.302. A steel girder of length ! rests freely on two supports
(Fig. 1.77). The moment of inertia of its cross-section is equal to [
(see the foregoing problem). Neglecting the mass of the girder and
assuming the sagging to be slight, find the deflection A due to the force
F applied to the middle of the girder.

1.303. The thickness of a rectangular steel girder equals k. Using
the equation of Problem 1.301, find the deflection A caused by the
weight of the girder in two cases:

(a) one end of the girder is embedded into a wall with the length
of the protruding section being equal to ! (Fig. 1.78a);

(b) the girder of length 2! rests freely on two supports (Fig. 1.78b).
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1.304. A steel plate of thickness k has the shape of a square whose
side equals I, with 2 < [. The plate is rigidly fixed to a vertical axle

F
— l J

Fig. 1.77.

00 which is rotated with a constant angular acceleration g (Fig. 1.79).
Find the deflection A, assuming the sagging to be small.

1.305. Determine the relationship between the torque N and the
torsion angle ¢ for

(a) the tube whose wall thickness Ar is considerably less than the
tube radius;

(b) for the solid rod of circular cross-section. Their length I, ra-
dius r, and shear modulus G are supposed to be known.

N1 A
« > ofl -
{(a)
- 2 —
5/ A ;Z/;A o
(b) “t
Fig. 1.78. Fig. 1.79.

1.306. Calculate the torque N twisting a steel tube of length [ =
= 3.0 m through an angle ¢ = 2.0° about its axis, if the inside and
outside diameters of the tube are equal to d;, = 30 mm and d, =
= 50 mm.

1.307. Find the maximum power which can be transmitted by
means of a steel shaft rotating about its axis with an angular velocity
o = 120 rad/s, if its length { = 200 cm, radius r = 1.50 c¢m, and
the permissible torsion angle ¢ = 2.5°

1.308. A uniform ring of mass m, with the outside radius r,, is
fitted tightly on a shaft of radius r,. The shaft is rotated about its
axis with a constant angular acceleration B. Find the moment of
elastic forces in the ring as a function of the distance r from the ro-
tation axis.

1.309. Find the elastic deformation energy of a steel rod of mass
m = 3.1 kg stretched to a tensile strain ¢ = 1.0-10-3.

1.310. A steel cylindrical rod of length ! and radius r is suspended
by its end from the ceiling.

(a) Find the elastic deformation energy U of the rod.

(b) Define U in terms of tensile strain Al/l of the rod.
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1.311. What work has to be performed to make a hoop out of a
steel band of length ! = 2.0 m, width & = 6.0 cm, and thickness
8 = 2.0 mm? The process is assumed to proceed within the elasticity
range of the material.

1.312. Find the elastic deformation energy of a steel rod whose
one end is fixed and the other is twisted through an angle ¢ = 6.0°.
The length of the rod is equal to ! = 1.0 m, and the radius to r =
=10 mm.

1.313. Find how the volume density of the elastic deformation
energy is distributed in a steel rod depending on the distance r from
its axis. The length of the rod is equal to I, the torsion angle to ¢.

1.314. Find the volume density of the elastic deformation energy
in fresh water at the depth of 2 = 1000 m.

1.7. HYDRODYNAMICS

o The fundamental equation of hydrodynamics of ideal fluid (Eulerian
equation):

av
p 5 =1—Vp, (1.7a)

where p is the fluid density, f is the volume density of mass forces (f = pgin
the case of gravity), Vp is the pressure gradient.

o Bernoulli's equation. In the steady flow of an ideal fluid

pv? -
T—]—pgh-{—p:const (1.7b)

along any streamline.
e Reynolds number defining the flow pattern of a viscous fluid:

Re = pul/n, (1.7¢)

where [ is a characteristic length, m is the fluid viscosity.
e Poiseuille’s law. The volume of liquid flowing through a circular tube
(in m3/s):

_ nR* p;—p,
Q—_Sn A (1.7d)

where R and ! are the tube’s radius and length, p; — p, is the pressure differ-
ence between the ends of the tube.

o Stokes’ law. The friction force on the sphere of radius r moving through
a viscous fluid:

F = 6anrv. (1.7¢)

1.315. Ideal fluid flows along a flat tube of constant cross-section,
located in a horizontal plane and bent as shown in Fig. 1.80 (top
view). The flow is steady. Are the pressures and velocities of the fluid
equal at points 7 and 2° What is the shape of the streamlines?

1.316. Two manometric tubes are mounted on a horizontal pipe
of varying cross-section at the sections S, and S, (Fig. 1.81). Find
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the volume of water flowing across the pipe’s section per unit time
if the difference in water columns is equal to Ah.

1.317. A Pitot tube (Fig. 1.82) is mounted along the axis of a gas
pipeline whose cross-sectional area is equal to S. Assuming the vis-
cosity to be negligible, find the volume of gas flowing across the

Sy Sy
Fig. 1.80. Fig. 1.81.

section of the pipe per unit time, if the difierence in the liquid col-
umns is equal to Ak, and the densities of the liquid and the gas are
po and p respectively,

1.318. A wide vessel with a small hole in the bottom is filled
with water and kerosene. Neglecting the viscosity, find the velo-
city of the water flow, if the thickness of the
water layer is equal to hy = 30 cm and that of
the kerosene layer to h, = 20 cm.

1.319. A wide cylindrical vessel 50 cm in
height is filled with water and rests on a table.

Assuming the viscosity to be negligible, find at yi
what height from the bottom of the vessel a small
hole should be perforated for the water jet com-

ing out of it to hit the surface of the table at Fig. 1.82
. . g. 1.82.

the maximum distance I,,, from the vessel.

Find lpqx-

1.320. A bent tube is lowered into a water stream as shown in
Fig. 1.83. The velocity of the stream relative to the tube is equal to
v = 2.5 m/s. The closed upper end of the tube located at the height
hy = 12 cm has a small orifice. To what height 2 will the water jet
spurt?

p1.321. The horizontal bottom of a wide vessel with an ideal fluid

has a round orifice of radius R, over which a round closed cylinder is
mounted, whose radius R, > R, (Fig. 1.84). The clearance between
the cylinder and the bottom of the vessel is very small, the fluid den-
sity is p. Find the static pressure of the fluid in the clearance as a
function of the distance r from the axis of the orifice (and the cylin-
der), if the height of the fluid is equal to A.

1.322. What work should be done in order to squeeze all water
from a horizontally located cylinder (Fig. 1.85) during the time ¢
by means of a constant force acting on the piston? The volume of wa-
ter in the cylinder is equal to V, the cross-sectional area of the ori-
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fice to s, with s being considerably less than the piston area.The
friction and viscosity are negligibly small.

1.323. A cylindrical vessel of height » and base area S is filled
with water. An orifice of area s <« S is opened in the bottom of the
vessel. Neglecting the viscosity of wa-
ter, determine how soon all the water A "\—'f
will pour out of the vessel.

1.324. A horizontally oriented tube
AB of length [ rotates with a constant
angular velocity © about a stationary
vertical axis OO’ passing through the end
A (Fig. 1.86). The tube is filled with an
ideal fluid. The end A of the tube is open,
the closed end B has a very small orifice.
Find the velocity of the fluid relative to
the tube as a function of the column
“height” h.

1.325. Demonstrate that in the case
of a steady flow of an ideal fluid Eq.
(1.7a) turns into Bernoulli equation.

1.326. On the opposite sides of a wide vertical vessel filled with
water two identical holes are opened, each having the cross-sectional

Fig. 1.85.

area S = 0.50 cm? The height difference between them is equal to
Ah = 51 cm. Find the resultant force of reaction of the water flow-
ing out of the vessel.

1.327. The side wall of a wide vertical cylindrical vessel of height
h = 75 cm has a narrow vertical slit running all the way downto
the bottom of the vessel. The length of the slit is I = 50 c¢m and the
width b = 1.0 mm. With the slit closed, the vessel is filled with
water. Find the resultant force of reaction of the water flowing out of
the vessel immediately after the slit is opened.

1.328. Water flows out of a big tank along a tube bent at right an-
gles: the inside radius of the tube is equal to r = 0.50 cm (Fig. 1.87).
The length of the horizontal section of the tube is equal to [ = 22 cm.
The water flow rate is Q = 0.50 litres per second. Find the moment
of reaction forces of flowing water, acting on the tube’s walls, relative
to the point O.
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1.329. A side wall of a wide open tank is provided with a narrow-
ing tube (Fig. 1.88) through which water flows out. The cross-sectional
area of the tube decreases from S = 3.0 cm? to s = 1.0 cm?. The
water level in the tank is 2 = 4.6 m higher than that in the tube.

0
w A o _‘5
(45} = e
Vi
0 ‘
‘ Fig. 1.86

Neglecting the viscosity of the water, find the horizontal component
of the force tending to pull the tube out of the tank.

Fig. 1.88.

1.330. A cylindrical vessel with water is rotated about its ver-
tical axis with a constant angular velocity w. Find:

(a) the shape of the free surface of the water;

(b) the water pressure distribution over the bottom of the vessel
along its radius provided the pressure at the central point is equal to

Po-

1.331. A thin horizontal disc of radius R = 10 c¢m is located with-
in a cylindrical cavity filled with oil whose viscosity n = 0.08 P
(Fig. 1.89). The clearance between the disc and the horizontal planes

of the cavity is equal to 2 = 1.0 mm,. Find the power developed by

¢ the viscous forces acting on the disc when it rotates with the angular

velocity @ = 60 rad/s. The end effects are to be neglected.
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1.332. A long cylinder of radius R, is displaced along its axis
with a constant velocity v, inside a stationary co-axial cylinder of
radius R,. The space between the cylinders is filled with viscous lig-
uid. Find the velocity of the liquid as a function of the distance r
from the axis of the cylinders. The flow is laminar.

1.333. A fluid with viscosity m fills the space between two long
co-axial cylinders of radii R, and R,, with R, < R,. The inner cyl-
inder is stationary while the outer one is rotated with a constant
angular velocity ©,. The fluid flow is laminar. Taking into account
that the friction force acting on a unit area of a cylindrical surface
of radius r is defined by the formula ¢ = nr (dw/dr), find:

(a) the angular velocity of the rotating fluid as a function of ra-
dius r;

(b) the moment of the friction forces acting on a unit length of the
outer cylinder.

1.334. A tube of length I and radius R carries a steady flow of
fluid whose density is p and viscosity 1. The fluid flow velocity de-
pends on the distance r from the axis of the tube asv = v, (1 — r*/R?).
Find:

(a) the volume of the fluid flowing across the section of the tube
per unit time;

(b) the kinetic energy of the fluid within the tube’g volume;

(c) the friction force exerted on the tube by the fluid;

(d) the pressure difference at the ends of the tube.

1.335. In the arrangement shown in Fig. 1.90 a viscous liquid
whose density is p = 1.0 g/cm? flows along a tube out of a wide tank

Fig. 1.90.

A. Find the velocity of the liquid flow, if 2, = 10 c¢m, &, = 20 cm,
and kg = 35 cm. All the distances ! are equal.

1.336. The cross-sectional radius of a pipeline decreases gradually
as r = ree~%, where @ = 0.50 m~?, z is the distance from the pipe-
line inlet. Find the ratio of Reynolds numbers for two cross-sections
separated by Az = 3.2 m.

1.337. When a sphere of radius r; = 1.2 mm moves in glycerin,
the laminar flow is observed if the velocity of the sphere does not
exceed v, = 23 cm/s. At what minimum velocity v, of a sphere of
radius r, = 5.5 cm will the flow in water become turbulent? The
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viscosities of glycerin and water are equal to , = 13.9 P and n, =
= 0.011 P respectively.

1.338. A lead sphere is steadily sinking in glycerin whose viscosity
is equal to n = 13.9 P. What is the maximum diameter of the sphere
at which the flow around that sphere still remains laminar? It is
known that the transition to the turbulent flow corresponds to Rey-
nolds number Re = 0.5. (Here the characteristic length is taken to
be the sphere diameter.)

1.339. A steel ball of diameter d = 3.0 mm starts sinking with
zero initial velocity in olive oil whose viscosity is n = 0.90 P. How
soon after the beginning of motion will the velocity of the ball differ
from the steady-state velocity by n = 1.0%?

1.8. RELATIVISTIC MECHANICS
o Lorentz contraction of length and slowing of a moving clock:

— Aty
=1 1—(v/c)? 1 AM=—————
0 V (V c) t ]/1——(17/0)3 ’

where I, is the proper length and At, is the proper time of the moving clock,
e Lorentz transformation®:

(1.8a)

o z—Vt y =y b t—zV/c? 1.8b
T VI=WiE ' ’ 1—(Vieyr” (1.8b)

e Interval sy, is an invariant:
st =313, — I}, =inv, (1.8¢c)

where ¢, is the time interval between events 1 and 2, ;4 is the distance between
the points at which these events occurred.

o Transformation of velocity*:

o _ vy VIi=(i)?®
Ehiy ey 777~ AL eay pn 77 Bunk (1.8d)

o Relativistic mass and relativistic momentum:

mo moV
M = =—seommrreme =mV = ——=oom—— 1.8
Vicwer * © Vi—wier (#:5)
where m, is the rest mass, or, simply, the mass.
e Relativistic equation of dynamics for a particle:
dap
—d—t-—-—Fy (l'Sf)
where p is the relativistic momentum of the particle.
e Total and kinetic energies of a relativistic particle:
E=mc?=me2+ T, T = (m — my) ¢t (1.8g)

_* The reference frame K’ is assumed to move with a velocity V in the posi-
tive direction of the z axis of the frame K, with the z* and x axes coinciding and
the y’ and y axes parallel.
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| e Relationship between the energy and momentum of a relativistic par-
ticle

E2—p22=mict, pc= VT (T+2mpc?). (1.8h)

e When considering the collisions of particles it helps to use the follow-
ing invariant quantity:

E® — p2c? = mfct, (1.81)

where E and p are the total energy and momentum of the system prior to the
collision, and m, is the rest mass of the particle (or the system) formed.

1.340. A rod moves lengthwise with a constant velocity v relative
to the inertial reference frame K. At what value of v will the length
of the rod in this frame be = 0.5% less than its proper length?

1.341. In a triangle the proper length of each side equals a. Find
the perimeter of this triangle in the reference frame moving relative
to it with a constant velocity V along one of its

(a) bisectors; (b) sides.

Investigate the results obtained at V < ¢ and V — ¢, where c is the
velocity of light.

1.342. Find the proper length of a rod if in the laboratory frame
of reference its velocity is v = ¢/2, the length I = 1.00 m, and the
angle between the rod and its direction of motion is 0 = 45°

1.343. A stationary upright cone has a taper angle 6 = 45°
and the area of the lateral surface S, = 4.0 m? Find: (a) its
taper angle; (b) its lateral surface area, in the reference frame
moving with a velocity v = (4/5)c along the axis of the cone.

1.34%. With what velocity (relative to the reference frame K) did
the clock move, if during the time interval ¢ = 5.0 s, measured by
the clock of the frame K, it became slow by At = 0.10 s?

1.345. A rod flies with constant velocity past a mark which is
stationary in the reference frame K. In the frame K it takes At =
— 920 ns for the rod to fly past the mark. In the reference frame fixed
to the rod the mark moves past the rod for At’ =25ns. Find the prop-
er length of the rod.

1.346. The proper lifetime of an unstable particle is equal to
At, = 10 ns. Find the distance this particle will traverse till its
decay in the laboratory frame of reference, where its lifetime is equal
to At = 20 ns.

1.347. In the reference frame K a muon moving with a velocity
v = 0.990c travelled a distance ! = 3.0 km from its birthplace to
the point where it decayed. Find:

(a) the proper lifetime of this muon;

(b) the distance travelled by the muon in the frame K “from the
muon's standpoint”.

1.348. Two particles moving in a laboratory frame of reference
along the same straight line with the same velocity v = (3/4)c strike
against a stationary target with the time interval At = 50 ns. Find
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the proper distance between the particles prior to their hitting the
target.

1.349. A rod moves along a ruler with a constant velocity. When
the positions of both ends of the rod are marked simultaneously in
the reference frame fixed to the ruler, the difference of readings on the
ruler is equal to Az, = 4.0 m. But when the positions of the rod’s
ends are marked simultaneously in the reference frame fixed to the
rod, the difference of readings on the same ruler is equal to Az, =
= 9.0 m. Find the proper length of the rod and its velocity relative
to the ruler.

1.350. Two rods of the same proper length I, move toward each
other parallel to a common horizontal axis. In the reference frame
fixed to one of the rods the time interval between the moments, when
the right and left ends of the rods coincide, is equal to At. What is
the velocity of one rod relative to the other?

1.351. Two unstable particles move in the reference frame K
along a straight line in the same direction with a velocity v = 0.990c.
The distance between them in this reference frame is eqnal to I =
= 120 m. At a certain moment both particles decay simultaneously
in the reference frame fixed to them. What time interval between the
moments of decay of the two particles will be observed in the frame
K? Which particle decays later in the frame K?

1.352. A rod AB oriented along the z axis of the reference frame K
moves in the positive direction of the x axis with a constant velocity
v. The point A is the forward end of the rod, and the point B its rear
end. Find:

(a) the proper length of the rod, if at the moment f, the coordi-
nate of the point A is equal to z,, and at the moment ¢y the coordi-
nate of the point B is equal to zp;

(b) what time interval should separate the markings of coordinates
of the rod’s ends in the frame K for the difference of coordinates to
become equal to the proper length of the rod.

1.353. The rod A’B’ moves with a constant velocity v relative to
the rod AB (Fig. 1.91). Both rods have the same proper length I, and

A’ g
CF —- /4
O =0
A 8
Fig. 1.91.

at the ends of each of them clocks are mounted, which are synchro-
nized pairwise: A with Band 4’ with B’. Suppose the moment when
the clock B’ gets opposite the clock A is taken for the beginning of
:he time count in the reference frames fixed to each of the rods. De-
ermine:
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(a) the readings of the clocks B and B’ at the moment when they
are opposite each other;

(b) the same for the clocks 4 and 4°.

1.354. There are two groups of mutually synchronized clocks K
and K’ moving relative to each other with a velocity v as shown in
Fig. 1.92. The moment when the clock A’ gets opposite the clock 4

v
—i

S

O O
ONO

P O
O P

x

ONO,
O O
ONO,

Fig. 1.92.

is taken for the beginning of the time count. Draw the approximate
position of hands of all the clocks at this moment “in terms of the
K clocks”; “in terms of the K’ clocks”.

1.355. The reference frame K’ moves in the positive direction of
the z axis of the frame K with a relative velocity V. Suppose that
at the moment when the origins of coordinates O and O’ coincide, the
clock readings at these points are equal to zero in both frames. Find

the displacement velocity z of the point (in the frame K) at which
the readings of the clocks of both reference frames will be permanent-

ly identical. Demonstrate that x << V.

1.356. At two points of the reference frame K two events occurred
separated by a time interval At. Demonstrate that if these events obey
the cause-and-effect relationship in the frame K (e.g. a shot fired
and a bullet hitting a target), they obey that relationship in any
other inertial reference frame K'.

1.357. The space-time diagram of Fig. 1.93 shows three events 4,
B, and C which occurred on the x axis of some inertial reference
frame. Find:

(a) the time interval between the events 4 and B in the reference
frame where the two events occurred at the same point;

(b) the distance between the points at which the events A and C
occurred in the reference frame where these two events are simulta-
neous.

1.358. The velocity components of a particle moving in the zy
plane of the reference frame K are equal to v, and v,. Find the veloc-
ity v’ of this particle in the frame K’ which moves with the velocity
V relative to the frame K in the positive direction of its z axis.

1.359. Two particles move toward each other with velocities

v; = 0.50¢ and v, = 0.75c relative to a laboratory frame of reference.
Find:
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(a) the approach velocity of the particles in the laboratory frame
of reference;

(b) their relative velocity.

1.360. Two rods having the same proper length I, move lengthwise
toward each other parallel to a common axis with the same velocity

ct,m

8

~ N W™ gy

A

g 7 2 3 4 & £ 7 zm

Fig. 1.93.

vrelative to the laboratory frame of reference. What is the length of

‘each rod in the reference frame fixed to the other rod?

1.361. Two relativistic particles move at right angles to each other
in a laboratory frame of reference, one with the velocity v, and the
other with the velocity v,. Find their relative velocity.

1.362. An unstable particle moves in the reference frame K’
along its y’ axis with a velocity v’. In its turn, the frame K’ moves
relative to the frame K in the positive direction of its x axis with a
velocity V. The 2’ and x axes of the two reference frames coincide, the
y' and y axes are parallel. Find the distance which the particle tra-
verses in the frame K, if its proper lifetime is equal to At,.

1.363. A particle moves in the frame K with a velocity v at an
angle 0 to the z axis. Find the corresponding angle in the frame K’
moving with a velocity V relative to the frame K in the positive di-
rection of its x axis, if the x and z' axes of the two frames coincide.

1.364. The rod AB oriented parallel to the 2’ axis of the reference
frame K’ moves in this frame with a velocity v’ along its y’ axis. In
its turn, the frame K’ moves with a velocity V relative to the frame
K as shown in Fig. 1.94. Find the angle 6 between the rod and the
z axis in the frame K.

1.365. The frame K’ moves with a constant velocity V relative to
the frame K. Find the acceleration w’ of a particle in the frame K’,
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if in the frame K this particle moves with a velocity v and accelera-
tion w along a straight line

(a) in the direction of the vector V;

(b) perpendicular to the vector V.

1.366. An imaginary space rocket launched from the Earth moves
with an acceleration w’ = 10g which is the same in every instanta-
neous co-moving inertial reference frame. The boost stage lasted

K 'AK,
oy v

Fig. 1.94.

7=1.0 year of terrestrial time. Find how much (in per cent) does
the rocket velocity differ from the velocity of light at the end of
the boost stage. What distance does the rocket cover by that moment?

1.367. From the conditions of the foregoing problem determine
the boost time T, in the reference frame fixed to the rocket. Remember
that this time is defined by the formula

To= S V1—=(v/e)? dt,
0

where dt is the time in the geocentric reference frame.

1.368. How many times does the relativistic mass of a particle
whose velocity differs from the velocity of light by 0.010% exceed
its rest mass?

1.369. The density of a stationary body is equal to p,. Find the
velocity (relative to the body) of the reference frame in which the
density of the body is n = 25% greater than p,.

1.370. A proton moves with a momentum p = 10.0 GeV/c, where
¢ is the velocity of light. How much (in per cent) does the proton
velocity differ from the velocity of light? ‘ :

1.371. Find the velocity at which the relativistic momentum of
a particle exceeds its Newtonian momentum n = 2 times.

1.372. What work has to be performed in order to increase the
velocity of a particle of rest mass m, from 0.60 ¢ to 0.80 ¢? Compare
thelresult obtained with the value calculated from the classical for-
mula,

1.373. Find the velocity at which the kinetic energy of a particle
equals its rest energy.

1.374. At what values of the ratio of the kinetic energy to rest
energy can the velocity of a particle be calculated from the classical
formula with the relative error less than ¢ = 0.010?
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1.375. Find how the momentum of a particle of rest mass m, de-
pends on its kinetic energy. Calculate the momentum of a proton
whose kinetic energy equals 500 MeV.

1.376. A beam of relativistic particles with kinetic energy T strikes
against an absorbing target. The beam current equals I, the charge
and rest mass of each particle are equal to ¢ and m, respectively. Find
the pressure developed by the beam on the target surface, and the
power liberated there.

1.377. A sphere moves with a relativistic velocity v through a gas
whose unit volume contains n slowly moving particles, each of mass
m. Find the pressyre p exerted by the gas on a spherical surface ele-
ment perpendicular to the velocity of the sphere, provided that the
particles scatter elastically. Show that the pressure is the same both
in the reference frame fixed to the sphere and in the reference frame
fixed to the gas.

1.378. A particle of rest mass m, starts moving at a moment ¢t = 0
due to a constant force F. Find the time dependence of the particle’s
velocity and of the distance covered.

1.379. A particle of rest mass m, moves along the x axis of the

frame K in accordance with the law z = }J a® + %2, where a is
a constant, ¢ is the velocity of light, and ¢ is time. Find the force
acting on the particle in this reference frame.

1.380. Proceeding from the fundamental equation of relativistic
dynamics, find:

(a) under what circumstances the acceleration of a particle coin-
cides in direction with the force F acting on it;

(b) the proportionality factors relating the force F and the accele-
ration w in the cases when F_I v and F || v, where v is the velocity
of the particle.

1.381. A relativistic particle with momentum p and total energy
E moves along the z axis of the frame K. Demonstrate that in the
frame K’ moving with a constant velocity V relative to the frame K
in the positive direction of its axis z the momentum and the total
energy of the given particle are defined by the formulas:

' px—EV/c? v E—psV
=S 0 P Tyioe
where p = V/e.

1.382. The photon energy in the frame K is equal to . Making use
of the transformation formulas cited in the foregoing problem, find
the energy €’ of this photon in the frame K’ moving with a velocity
V relative to the frame K in the photon’s motion direction. At what
value of V is the energy of the photon equal to &' = &/2?

1.383. Demonstrate that the quantity E? — p%? for a particle is
an invariant, i.e. it has the same magnitude in all inertial reference
frames. What is the magnitude of this invariant?

1.384. A neutron with kinetic energy T = 2mc?, where m, is its
rest mass, strikes another, stationary, neutron. Determine:
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(a) the combined kinetic energy 7 of both neutrons in the frame
ff)f their centre of inertia and the momentum 5 of each neutron in that
rame;

(b) the velocity of the centre of inertia of this system of particles.

Instruction. Make use of the invariant E* — p%? remaining con-
stant on transition from one inertial reference frame to another (E
is the total energy of the system, p is its composite momentum).

1.'385. A particle of rest mass m, with kinetic energy T strikes a
stationary particle of the same rest mass. Find the rest mass and the
velocity of the compound particle formed as a result of the collision.

1.386. How high must be the kinetic energy of a proton striking
another, stationary, proton for their combined kinetic energy in the
fliartne of thtta centre of inertia to be equal to the total kinetic energy
of two protons moving toward each oth ith indivi ineti
SRR GeVg? er with individual kinetic

1.?,87. A stationary particle of rest mass m, disintegrates into three
particles with rest masses m,, m,, and m,. Find the maximum total
energy that, for example, the particle m, may possess.

1.3?8. A relativistic rocket emits a gas jet with non-relativistic
velocity u constant relative to the rocket. Find how the velocity v

of the rocket depends on its rest mass m if the initial rest mass of
the rocket equals my.

PART TWO

THERMODYNAMICS
AND MOLECULAR PHYSICS

2.1. EQUATION OF THE GAS STATE. PROCESSES

o Ideal gas law:

pV=—- RT, (2.1a)

m
M
where M is the molar mass.

e Barometric formula:

p = poe ™ MEMRT, ' (2.1b)

where p, is the pressure at the height 2 = 0.
e Van der Waals equation of gas state (for a mole):

a
(P+-‘-,E) (Vy— b)=RT, (2-1¢c)
where Vs is the molar volume under given p and 7.

2.1. A vessel of volume ¥V = 301 contains ideal gas at the tempera-
ture 0 °C. After a portion of the gas has been let out, the pressure in
the vessel decreased by Ap = 0.78 atm (the temperature remaining
constant). Find the mass of the released gas. The gas density under
the normal conditions p = 1.3 g/l

2.2. Two identical vessels are connected by a tube with a valve
letting the gas pass from one vessel into the other if the pressure differ-
ence Ap > 1.10 atm. Initially there was a vacuum in one vessel
while the other contained ideal gas at a temperature t, = 27 °C
and pressure p; = 1.00 atm. Then both vessels were heated to a tem-
perature t, = 107 °C. Up to what value will the pressure in the first
vessel (which had vacuum initially) increase?

2.3. A vessel of volume ¥V = 20 | contains a mixture of hydrogen
and helium at a temperature ¢t = 20 °C and pressure p = 2.0 atm.
The mass of the mixture is equal to m = 5.0 g. Find the ratio of the
mass of hydrogen to that of helium in the given mixture.

2.4. A vessel contains a mixture of nitrogen (m, = 7.0 g) and
carbon dioxide (m, = 11 g) at a temperature 7 = 290 K and pres-
sure p, = 1.0 atm. Find the density of this mixture, assuming the
gases to be ideal.

2.5. A vessel of volume V = 7.51 contains a mixture of ideal gases
at a temperature 7' = 300 K: v, = 0.10 mole of oxygen, v, = 0.20
mole of nitrogen, and v; = 0.30 mole of carbon dioxide. Assuming
the gases to be ideal, find:

(a) the pressure of the mixture;
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(b) 'the mean molar mass M of the given mixture which enters its
4:quat10n of state pV = (m/M) RT, where m is the mass of the mix-

ure.

2'.6. A vertical cylinder closed from both ends is equipped with an
easily moving piston dividing the volume into two parts, each con-
taining one mole of air. In equilibrium at Ty = 300 K the volume of
the upper part is n = 4.0 times greater than that of the lower part.
A,t w}éa(t)?temperature will the ratio of these volumes be equal to
v = 3.07

2.7. A vessel of volume V is evacuated by means of a piston air
pump. One piston stroke captures the volume AV. How many strokes
are needed to reduce the pressure in the vessel n times? The process
is assumed to be isothermal, and the gas ideal.

2.8. Find the pressure of air in a vessel being evacuated as a funec-
tion of evacuation time ¢. The vessel volume is V, the initial pressure
is po. The process is assumed to be isothermal, and the evacuation
rate equal to C and independent of pressure.

Note. The evacuation rate is the gas volume being evacuated per
unit time, with that volume being measured under the gas pressure
attained by that moment.

2.9. A chamber of volume V = 87 1 is evacuated by a pump whose
evacuation rate (see Note to the foregoing problem) equals C =
= 10 1/s. How soon will the pressure in the cham-
ber decrease by 7 = 1000 times?

2.10. A smooth vertical tube having two different
sections is open from both ends and equipped with
two pistons of different areas (Fig. 2.1). Each
piston slides within a respective tube section. One
mole of ideal gas is enclosed between the pistons
tied with a non-stretchable thread. The cross-
sectional area of the upper piston is AS = 10 cm?
greater than that of the lower one. The combined
mass of the two pistons is equal to m = 5.0 kg.
The outside air pressure is py = 1.0 atm. By how
many kelvins must the gas between the pistons Fig. 2.1.
be heated to shift the pistons through ! = 5.0 cm?

2.41. Find the maximum attainable temperature of ideal gas in
each of the following processes:

(@) p = po— aV?% (b) p = pe#,
where pg,.@ and P are positive constants, and V is the volume of one
mole of gas.

2.12. Find the minimum attainable pressure of ideal gas in the
process T' = Ty + aV?, where T, and o are positive constants, and
V is the volume of one mole of gas. Draw the approximate p vs V
plot of this process.

2.13. A tall cylindrical vessel with gaseous nitrogen is located in
a uniform gravitational field in which the free-fall acceleration
is equal to g. The temperature of the nitrogen varies along the height
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h so that its density is the same throughout the volume. Find the
temperature gradient dT/dh. .

2.14. Suppose the pressure p and the density p of air are related
as p/p" = const regardless of height (n is a constant here). Find the
corresponding temperature gradient.

2.15. Let us assume that air is under standard conditions close to
the Earth’s surface. Presuming that the temperature and the molar
mass of air are independent of height, find the air pressure at the
height 5.0 km over the surface and in a mine at the depth 5.0 km
below the surface.

2.16. Assuming the temperature and the molar mass of air, as
well as the free-fall acceleration, to be independent of the height,
find the difference in heights at which the air densities at the tempe-
rature 0 °C differ

(a) e times; (b) by n = 1.0%.

2.17. An ideal gas of molar mass M is contained in a tall vertical
cylindrical vessel whose base area is § and height 4. The temperature
of the gas is T, its pressure on the bottom base is p,. Assuming the
temperature and the free-fall acceleration g to be independent of the
height, find the mass of gas in the vessel.

2.18. An ideal gas of molar mass M is contained in a very tall
vertical cylindrical vessel in the uniform gravitational field in which
the free-fall acceleration equals g. Assuming the gas temperature to
be the same and equal to 7, find the height at which the centre of
gravity of the gas is located.

2.19. An ideal gas of molar mass M is located in the uniform gravi-
tational field in which the free-fall acceleration is equal to g. Find
the gas pressure as a function of height &, if p = p, at h = 0, and
the temperature varies with height as

(@ T =To(1 —ah); (b) T =T, (1 + ah),
where a is a positive constant.

2.20. A horizontal cylinder closed from one end is rotated with
a constant angular velocity » about a vertical axis passing through
the open end of the cylinder. The outside air pressure is equal to
Do, the temperature to 7, and the molar mass of air to M. Find the
air pressure as a function of the distance r from the rotation axis. The
molar mass is assumed to be independent of r.

2.21. Under what pressure will carbon dioxide have the density

= 500 g/1 at the temperature ' = 300 K? Carry out the calculations
both for an ideal and for a Van der Waals gas.

2.22. One mole of nitrogen is contained in a vessel of volume V =
= 1.00 1. Find:

(a) the temperature of the nitrogen at which the pressure can be
calculated from an ideal gas law with an error n = 10% (as compared
with the pressure calculated from the Van der Waals equation of state);

(b) the gas pressure at this temperature.

2.23. One mole of a certain gas is contained in a vessel of volume
V = 0.250 1. At a temperature T, == 300 K the gas pressure is p; =
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90 atm, and at a temperature T, = 350 K th i
» AN g = e pressure is p, =

110 atm. Find _the Van der Waals parameters for this gas. i
2.24. Find @he isothermal compressibility » of a Van der Waals
gas as a function of volume V at temperature 7.

Note. By definition, x = — & 2L,

. P

2.25. Making use of the result obtained in the foregoing problem,
find at what temperature the isothermal compressibility % of a Van
der Waals gas is greater than that of an ideal gas. Examine the case
when the molar volume is much greater than the parameter b.

2.2. THE FIRST LAW OF THERMODYNAMICS,
HEAT CAPACITY

o The first law of thermodynamics:

Q= AU+ 4, (2.2a)

where AU is the increment of the internal ener f
e Work performed by gas: 8Y of the system.

A= S p dv. (2.2b)
e Internal energy of an ideal gas:
=T _.m _RT _ _pV
U 13 CVT— 17 Y—l —_-Y-——i. (2-20)
o Molar heat capacity in a polytropic process (pV" = const):
R R (n—7) R
C= —_ =
V=1 1~ e—De—D (2:24)

o Internal energy of one mole of a Van der Waals gas:

a
U=Cyl— 7

(2.2¢)

_ 2.26. Demonstrate that the interval energy U of the air in a room
is independent of temperature provided the outside pressure p is
constant. Calculate U, if p is equal to the normal atmospheric pres-
sure and the room’s volume is equal to ¥V = 40 m?.

2.2?. A thermally insulated vessel containing a gas whose molar
mass is equal to M and the ratio of specific heats Cp/Cy, = ¥ moves
with a velocity v. Find the gas temperature increment resulting from
the sudden stoppage of the vessel.

2.28. Two thermally insulated vessels 7 and 2 are filled with air
and connected by a short tube equipped with a valve. The volumes
of the vessels, the pressures and temperatures of air in them are
known (V,, p;, T1 and V,, p,, T,). Find the air temperature and
pressure established after the opening of the valve.

‘2'.29. .Gaseous hydrogen contained initially under standard con-
ditions in a sealed vessel of volume V = 5.0 1 was cooled by AT =
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= 55 K. Find how much the internal energy of the gas will change and
what amount of heat will be lost by the gas.

2.30. What amount of heat is to be transferred to nitrogen in the
isobaric heating process for that gas to perform the work 4 = 2.0 J?

2.31. As a result of the isobaric heating by AT = 72 K one mole
of a certain ideal gas obtains an amount of heat @ = 1.60 kJ. Find
the work performed by the gas, the increment of its internal energy,
and the value of y = C,/Cy.

2.32. Two moles of a certain ideal gas at a temperature Ty = 300 K
were cooled isochorically so that the gas pressure reduced n = 2.0
times. Then, as a result of the isobaric process, the gas expanded till
its temperature got back to the initial value. Find the total amount
of heat absorbed by the gas in this process.

2.33. Calculate the value of y = C,/Cy for a gaseous mixture con-
sisting of v, = 2.0 moles of oxygen and v, = 3.0 moles of carbon
dioxide. The gases are assumed to be ideal.

2.34. Find the specific heat capacities ¢y and ¢, for a gaseous mix-
ture consisting of 7.0 g of nitrogen and 20 g of argon. The gases are
assumed to be ideal.

2.35. One mole of a certain ideal gas is contained under a weight-
less piston of a vertical cylinder at a temperature 7. The space over
the piston opens into the atmosphere. What work has to be performed
in order to increase isothermally the gas volume under the piston n
times by slowly raising the piston? The friction of the piston against
the cylinder walls is negligibly small.

2.36. A piston can freely move inside a horizontal cylinder closed
from both ends. Initially, the piston separates the inside space of
the cylinder into two equal parts each of volume V,, in which an
ideal gas is contained under the same pressure p, and at the same tem-
perature. What work has to be performed in order to increase isother-
mally the volume of one part of gas n times compared to that of the
other by slowly moving the piston?

2.37. Three moles of an ideal gas being initially at a temperature
T, = 273 K were isothermally expanded n = 5.0 times its initial
volume and then isochorically heated so that the pressure in the final
state became equal to that in the initial state. The total amount of
heat transferred to the gas during the process equals Q = 80 klJ.
Find the ratio y = Cp/Cy for this gas.

2.38. Draw the approximate plots of isochoric, isobaric, isother-
mal, and adiabatic processes for the case of an ideal gas, using the
following variables:

(a) p, T (b) V, T.

2.39. One mole of oxygen being initially at a temperature Ty =
= 290 K is adiabatically compressed to increase its pressure m =
= 10.0 times. Find:

(a) the gas temperature after the compression;

(b) the work that has been performed on the gas.

2.40. A certain mass of nitrogen was compressed v = 5.0 times
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(in terms of volume), first adiabatically, and then isothermally. In
both cases the initial state of the gas was the same. Find the ratio of
the respective works expended in each compression.

2.41. A heat-conducting piston can freely move inside a closed
thermally insulated cylinder with an ideal gas. In equilibrium the
piston divides the cylinder into two equal parts, the gas temperature
being equal to T,. The piston is slowly displaced. Find the gas tem-
perature as a function of the ratio n of the volumes of the greater and
smaller sections. The adiabatic exponent of the gas is equal to y.

2.42. Find the rate v with which helium flows out of a thermally
insulated vessel into vacuum through a small hole. The flow rate of
the gas inside the vessel is assumed to be negligible under these con-
ditions. The temperature of helium in the vessel is T = 1,000 K.

2.43. The volume of one mole of an ideal gas with the adiabatic
exponent y is varied according to the law V = a/T, where a is a con-
stant. Find the amount of heat obtained by the gas in this process
if the gas temperature increased by AT.

2.44. Demonstrate that the process in which the work performed
by an ideal gas is proportional to the corresponding increment of its
internal energy is described by the equation pV" = const, where n
is a constant.

2.45. Find the molar heat capacity of an ideal gas in a polytropic
process pV» = const if the adiabatic exponent of the gas is equal to
v. At what values of the polytropic constant » will the heat capacity
of the gas be negative?

2.46. In a certain polytropic process the volume of argon was in-
creased o = 4.0 times. Simultaneously, the pressure decreased
B = 8.0 times. Find the molar heat capacity of argon in this process,
assuming the gas to be ideal.

2.47. One mole of argon is expanded polytropically, the polytrop-
ic constant being n = 1.50. In the process, the gas temperature
changes by AT = — 26 K. Find:

(a) the amount of heat obtained by the gas;

(b) the work performed by the gas.

2.48. An ideal gas whose adiabatic exponent equals y is expanded
according to the law p = aV, where a is a constant. The initial vol-
ume of the gas is equal to V. As a result of expansion the volume in-
creases m times. Find:

(a) the increment of the internal energy of the gas;

(b) the work performed by the gas;

(c) the molar heat capacity of the gas in the process.

2.49. An ideal gas whose adiabatic exponent equals y is expanded
so that the amount of heat transferred to the gas is equal to the de-
crease of its internal energy. Find:

(a) the molar heat capacity of the gas in this process;

(b) the equation of the process in the variables 7, V;

(c) the work performed by one mole of the gas when its volume
increases n times if the initial temperature of the gas is Ty.
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2.50. One mole of an ideal gas whose adiabatic exponent equals
v undergoes a process in which the gas pressure relates to the tempera-
ture as p = aT*, where a and a are constants. Find:

(a) the work performed by the gas if its temperature gets an in-
crement AT;

(b) the molar heat capacity of the gas in this process; at what value
of a will the heat capacity be negative?

2.51. An ideal gas with the adiabatic exponent y undergoes a
process in which its internal energy relates to the volume as U = aV%,
where a and « are constants. Find:

(a) the work performed by the gas and the amount of heat to be
transferred to this gas to increase its internal energy by AU;

(b) the molar heat capacity of the gas in this process.

2.52. An ideal gas has a molar heat capacity C, at constant
volume. Find the molar heat capacity of this gas as a function of its
volume V, if the gas undergoes the following process:

(@) T = Toe*¥ ; (b) p = pee*”,
where T, py, and a are constants.

2.53. One mole of an ideal gas whose adiabatic exponent equals y
undergoes a process p = p, + a/V, where p, and o are positive con-
stants. Find:

(a) heat capacity of the gas as a function of its volume;

(b) the internal energy increment of the gas, the work performed
by it, and the amount of heat transferred to the gas, if its volume
increased from V, to V,.

2.54. One mole of an ideal gas with heat capacity at constant
pressure Cp, undergoes the process 7 = Ty + aV, where T, and o
are constants. Find:

(a) heat capacity of the gas as a function of its volume;

(b) the amount of heat transferred to the gas, if its volume in-
creased from V,; to V,.

2.55. For the case of an ideal gas find the equation of the process
(in the variables T, V) in which the molar heat capacity varies as:

(8 C=Cy +al; (b) C = Cy + BV; (¢) C=Cy + ap,
where a, B, and a are constants.

2.56. An ideal gas has an adiabatic exponent y. In some process
its molar heat capacity varies as C = /T, where « is a constant.
Find:

(a) the work performed by one mole of the gas during its heating
from the temperature 7, to the temperature n times higher;

(b) the equation of the process in the variables p, V.

2.57. Find the work performed by one mole of a Van der Waals
gas during its isothermal expansion from the volume V, to V, at
a temperature 7.

2.58. One mole of oxygen is expanded from a volume V, =
=1.001to V, = 5.0 1 at a constant temperature T = 280 K. Cal-
culate:

(a) the increment of the internal energy of the gas:
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(b) the amount of the absorbed heat.

The gas is assumed to be a Van der Waals gas.

2.59. For a Van der Waals gas find: .

(a) the equation of the adiabatic curve in 'Qhe variables T, V;

(b) the difference of the molar heat capacities C;, — Cy as a func-
tion of T and V.

2.60. Two thermally insulated vessels are interconnected by_ a
tube equipped with a valve. One vessel of volume V; = 101 contains
v = 2.5 moles of carbon dioxide. The other vessel of volume V, =
1001 is evacuated. The valve having been opened, the gas adiaba.tlc-
ally expanded. Assuming the gas to obey the Van der Wagls equation,
find its temperature change accompanying the expansion.

2.61. What amount of heat has to be transferred to v = 3.0 moles
of carbon dioxide to keep its temperature constant while it ex-
pands into vacuum from the volume V; = 5.0 1 to ¥V, = 10 1? The
gas is assumed to be a Van der Waals gas.

2.3. KINETIC THEORY OF GASES.
BOLTZMANN'S LAW AND MAXWELL'S DISTRIBUTION

e Number of collisions exercised by gas molecules on a unit area of the
wall surface per unit time:

v = -71!- n (v), (2.3a)

where n is the concentration of molecules, and (v) is their mean velocity.
e Equation of an ideal gas state:

p = nkT. (2.3b)
e Mean energy of molecules:

(&)= ?‘ kT, (2-3¢)

where i is the sum of translational, rotational, and the double number of vibra-

tional degrees of freedom.
e Maxwellian distribution:

1/2 ot
AN (v)=N ( ankT ) / o~/ 2RT dvg, (2.3d)
dN (v)=N (—2—;-27)3/2 e~ M7 /2kT 4yt gy, (2-3e)
e Maxwellian distribution in a reduced form:
dN (W=N ‘;‘_ e~ ulduy, (2-30)
n

where u = v/v,, v, is the most probable velocity. o
e The most probable, the mean, and the root mean square velocities of
molecules:

kT 8 kT kT
"p=l/2",,7 W=V = "sq=l/37- (2-3¢)

e Boltzmann’s formula:

n—nye—U=Uo)/kT

(2.3h)
where U is the potential energy of a molecule.

2.62. Modern vacuum pumps permit the pressures down to p =
= 4-107% atm to be reached at room temperatures. Assuming that
the gas exhausted is nitrogen, find the number of its molecules per
1 cm® and the mean distance between them at this pressure.

2.63. A vessel of volume V = 5.01 contains m = 1.4 g of nitrogen
at a temperature 7 = 1800 K. Find the gas pressure, taking into
account that 1 = 30% of molecules are disassociated into atoms at
this temperature.

2.64. Under standard conditions the density of the helium and
nitrogen mixture equals p = 0.60 g/l. Find the concentration of
helium atoms in the given mixture.

2.65. A parallel beam of nitrogen molecules moving with velocity

= 400 m/s impinges on a wall at an angle 8 = 30° to its normal.
The concentration of molecules in the beam n = 0.9-10'® c¢m-3.
Find the pressure exerted by the beam on the wall assuming the mo-
lecules to scatter in accordance with the perfectly elastic collision
law.

2.66. How many degrees of freedom have the gas molecules, if
under standard conditions the gas density is p = 1.3 mg/cm?® and the
velocity of sound propagation in it is v = 330 m/s.

2.67. Determine the ratio of the sonic velocity v in a gas to the
root mean square velocity of molecules of this gas, if the molecules
are

(a) monatomic; (b) rigid diatomic.

2.68. A gas consisting of N-atomic molecules has the temperature
T at which all degrees of freedom (translational, rotational, and vi-
brational) are excited. Find the mean energy of molecules in such
a gas. What fraction of this energy corresponds to that of transla-
tional motion?

2.69. Suppose a gas is heated up to a temperature at which all
degrees of freedom (translational, rotational, and vibrational) of
its molecules are excited. Find the molar heat capacity of such a gas

in the isochoric process, as well as the adiabatic exponent v, if the
gas consists of

(a) diatomic;

(b) linear N-atomic;

(c) network N-atomic
molecules.

2.70. An ideal gas consisting of N-atomic molecules is expanded
isobarically. Assuming that all degrees of freedom (translational,
rotational, and vibrational) of the molecules are excited, find what
fraction of heat transferred to the gas in this process is spent to

perform the work of expansion. How high is this fraction in the case
of a monatomic gas?
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2.71. Find the molar mass and the number of degrees of freedom
of molecules in a gas if its heat capacities are known: ¢y =
= 0.65 J/(g-K) and ¢, = 0.91 J/(g-K).

2.72. Find the number of degrees of freedom of molecules in a gas
whose molar heat capacity

(a) at constant pressure is equal to C, = 29 J/(mol-K);

(b) is equal to C = 29 J/(mol:-K) in the process pT = const.

2.73. Find the adiabatic exponent y for a mixture consisting of
v, moles of a monatomic gas and v, moles of gas of rigid diatomic
molecules.

2.74. A thermally insulated vessel with gaseous nitrogen at a
temperature ¢ = 27 °C moves with velocity v = 100 m/s. How much
(in per cent) and in what way will the gas pressure change on a sudden
stoppage of the vessel?

2.75. Calculate at the temperature ¢ = 17 °C:

(a) the root mean square velocity and the mean kinetic energy of
an oxygen molecule in the process of translational motion;

(b) the root mean square velocity of a water droplet of diameter
d = 0.10 pm suspended in the air.

.2.76. A gas consisting of rigid diatomic molecules is expanded
adiabatically. How many times has the gas to be expanded to reduce
the root mean square velocity of the molecules = 1.50 times?

2.77. The mass m = 15 g of nitrogen is enclosed in a vessel at
a temperature 7 = 300 K. What amount of heat has to be transferred
to the gas to increase the root mean square velocity of its molecules
1 = 2.0 times?

2.78. The temperature of a gas consisting of rigid diatomic mole-
cules is T = 300 K. Calculate the angular root mean square velocity
of a rotating molecule if its moment of inertia is equal to [ =
= 2.1-10-3% g.cm?.

2.79. A gas consisting of rigid diatomic molecules was initially
under standard conditions. Then the gas was compressed adiaba-
tically n = 5.0 times. Find the mean kinetic energy of a rotating
molecule in the final state.

2.80. How will the rate of collisions of rigid diatomic molecules
against the vessel’s wall change, if the gas is expanded adiabatically
n times?

2.81. The volume of gas consisting of rigid diatomic molecules
was increased n = 2.0 times in a polytropic process with the molar
heat capacity C = R. How many times will the rate of collisions of
molecules against a vessel’s wall be reduced as a result of this pro-
cess?

2.82. A gas consisting of rigid diatomic molecules was expanded
in a polytropic process so that the rate of collisions of the molecules
against the vessel’s wall did not change. Find the molar heat capacity
of the gas in this process.

2.83. Calculate the most probable. the mean, and the root mean
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square velocities of a molecule of a gas whose density under stan-
dard atmospheric pressure is equal to p = 1.00 g/l.

2.84. Find the fraction of gas molecules whose velocities differ
by less than 6n = 1.00% from the value of

(a) the most probable velocity;

(b) the root mean square velocity.

2.85. Determine the gas temperature at which

(a) the root mean square velocity of hydrogen molecules exceeds
their most probable velocity by Av = 400 m/s;

(b) the velocity distribution function / (v) for the oxygen mole-
cules will have the maximum value at the velocity v = 420 m/s.

2.86. In the case of gaseous nitrogen find:

(a) the temperature at which the velocities of the molecules v; =
= 300 m/s and v, == 600 m/s are associated with equal values of
the Maxwell distribution function £ (v);

(b) the velocity of the molecules v at which the value of the Max-
well distribution function F (v) for the temperature T, will be the
same as that for the temperature 7 times higher.

2.87. At what temperature of a nitrogen and oxygen mixture do
the most probable velocities of nitrogen and oxygen molecules differ
by Av = 30 m/s?

2.88. The temperature of a hydrogen and helium mixture is 7 =
= 300 K. At what value of the molecular velocity v will the Maxwell
distribution function F (v) yield the same magnitude for both gases?

2.89. At what temperature of a gas will the number of molecules,
whose velocities fall within the given interval from v to v + dv,
be the greatest? The mass of each molecule is equal to m.

2.90. Find the fraction of molecules whose velocity projections on
the z axis fall within the interval from v, to v, 4 dv,, while the
moduli of perpendicular velocity components fall within the inter-
val from v, to v, + dv,. The mass of each molecule is m, and the
temperature is 7.

2.91. Using the Maxwell distribution function, calculate the
mean velocity projection (v.) and the mean value of the modulus of
this projection (| v, |) if the mass of each molecule is equal to m
and the gas temperature is 7.

2.92. From the Maxwell distribution function find (v%), the mean
value of the squared v, projection of the molecular velocity in a gas
at a temperature 7. The mass of each molecule is equal to m.

- 2.93. Making use of the Maxwell distribution function, calculate
the number v of gas molecules reaching a unit area of a wall per unit
time, if the concentration of molecules is equal to n, the temperature
to T, and the mass of each molecule is m.

2.94. Using the Maxwell distribution function, determine the
pressure exerted by gas on a wall,if the gas temperature is 7 and
the concentration of molecules is n.

2.95. Making use of the Maxwell distribution function, find
(1/v), the mean value of the reciprocal of the velocity of molecules
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in an ideal gas at a temperature 7, if the mass of each molecule is
equal to m. Compare the value obtained with the reciprocal of the
mean velocity.

2.96. A gas consists of molecules of mass m and isat a temperature
T. Making use of the Maxwell velocity distribution function, find
the corresponding distribution of the molecules over the kinetic
energies ¢. Determine the most probable value of the kinetic energy
g,. Does e; correspond to the most probable velocity?

2.97. What fraction of monatomic molecules of a gas in a thermal
equilibrium possesses kinetic energies differing from the mean value
by 6n = 1.0 % and less?

2.98. What fraction of molecules in a gas at a temperature T
has the kinetic energy of translational motion exceeding g, if g, >
> kT?

2.99. The velocity distribution of molecules in a beam coming
out of ahole in a vessel is described by the function F (v)==A4v3e -mv*/2kT,
where 7 is the temperature of the gas in the vessel. Find the most
probable values of

(a) the velocity of the molecules in the beam; compare the result
obtained with the most probable velocity of the molecules in the
vessel;

(b) the kinetic energy of the molecules in the beam.

2.100. An ideal gas consisting of molecules of mass m with concen-
tration n has a temperature 7. Using the Maxwell distribution func-
tion, find the number of molecules reaching a unit area of a wall
at the angles between 0 and 6 - dO to its normal per unit time.

2.101. From the conditions of the foregoing problem find the num-
ber of molecules reaching a unit area of a wall with the velocities
in the interval from v to v -+ dv per unit time.

2.102. Find the force exerted on a particle by a uniform field if
the concentrations of these particles at two levels separated by the
distance Ak = 3.0 cm (along the field) differ by n = 2.0 times.
The temperature of the system is equal to 7 = 280 K.

2.103. When examining the suspended gamboge droplets unde:
a microscope, their average numbers in the layers separated by the
distance k=40 pm were found to differ by 1 = 2.0 times. The envi-
ronmental temperature is equal to 7 = 290 K. The diameter of
the droplets is d = 0.40 pm, and their density exceeds that of the
surrounding fluid by Ap = 0.20 g/cm®. Find Avogadro’s number
from these data.

2.104. Suppose that 1, is the ratio of the molecular concentration
of hydrogen to that of nitrogen at the Earth’s surface, while n is
the corresponding ratio at the height # = 3000 m. Find the ratio
1/1, at the temperature 7 = 280 K, assuming that the temperature
and the free fall acceleration are independent of the height.

2.105. A tall vertical vessel contains a gas composed of two kinds
of molecules of masses m,; and m,, with my > m,. The concentrations
of these molecules at the bottom of the vessel are equal to r, and n,
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respectively, with n, > n,. Assuming the temperature 7 and the
free-fall acceleration g to be independent of the height, find the height
at which the concentrations of these kinds of molecules are equal.

2.106. A very tall vertical cylinder contains carbon dioxide at
a certain temperature 7. Assuming the gravitational field to be uni-
form, find how the gas pressure on the bottom of the vessel will
change when the gas temperature increases 1 times.

2.107. A very tall vertical cylinder contains a gas at a tempera-
ture 7. Assuming the gravitational field to be uniform, find the mean
value of the potential energy of the gas molecules. Does this value
depend on whether the gas consists of one kind of molecules or of
several kinds?

2.108. A horizontal tube of length I = 100 cm closed from both
ends is displaced lengthwise with a constant acceleration w. The tube
contains argon at a temperature 7' = 330 K. At what value of w will
the argon concentrations at the tube’s ends differ by n = 1.0%?

2.109. Find the mass of a mole of colloid particles if during their
centrifuging with an angular velocity w about a vertical axis the con-
centration of the particles at the distance r, from the rotation axis is
1 times greater than that at the distance r, (in the same horizontal
plane). The densities of the particles and the solvent are equal to
p and to p, respectively.

2.110. A horizontal tube with closed ends is rotated with a cons-
tant angular velocity w about a vertical axis passing through one of
its ends. The tube contains carbon dioxide at a temperature 7 =
= 300 K. The length of the tube is [ = 100 cm. Find the value ®©
at which the ratio of molecular concentrations at the opposite ends
of the tube is equal to n = 2.0.

2.111. The potential energy of gas molecules in a certain central
field depends on the distance r from the field’s centre as U (r) = ar?,
where a is a positive constant. The gas temperature is 7', the concen-
tration of molecules at the centre of the field is n,. Find:

(a) the number of molecules located at the distances between
r and r + dr from the centre of the field;

(b) the most probable distance separating the molecules from the
centre of the field;

(c) the fraction of molecules located in the spherical layer between
r and r 4 dr;

(d) how many times the concentration of molecules in the centre
of the field will change if the temperature decreases m times.

2.412. From the conditions of the foregoing problem find:

(a) the number of molecules whose potential energy lies within
the interval from U to U + dU;

(b) the most probable value of the potential energy of a molecule;
compare this value with the potential energy of a molecule located
at its most probable distance from the centre of the field.
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2.4. THE SECOND LAW OF THERMODYNAMICS.
ENTROPY

e Heat engine efficiency:

4 Qs
Pl W 41 2.4
=3 0y (2-48)
where Q, is the heat obtained by the working substance, Q; is the heat released
by the working substance.
e Efficiency of a Carnot cycle:

_Ti—Te
==z, (2.4b)

where T, and T, are the temperatures of the hot and cold bodies respectively.
e Clausius inequality:

8Q
<§ <0, (2-4c)

where §Q is the elementary amount of heat transferred to the system (6Q is an
elgebraic quantity).

e Entropy increment of a system:
8
AS > S TQ (2.4d)
e Fundamental relation of thermodynamics:

TdS >dU + pdv. (2.4¢)

e Relation between the entropy and the statistical weight Q (the thermo-
dynamic probability): .

S =klngQ, (2.45)

where k is the Boltzmann constant.

2.113. In which case will the efficiency of a Carnot cycle be higher:
when the hot body temperature is increased by AT, or when the cold
body temperature is decreased by the same magnitude?

2.114. Hydrogen is used in a Carnot cycle as a working substance.
Find the efficiency of the cycle, if as a result of an adiabatic expansion

(a) the gas volume increases n = 2.0 times;

(b) the pressure decreases rn = 2.0 times.

2.115. A heat engine employing a Carnot cycle with an efficiency
of 1 = 10% is used as a refrigerating machine, the thermal reservoirs
being the same. Find its refrigerating efficiency e.

2.116. An ideal gas goes through a cycle consisting of alternate
isothermal and adiabatic curves (Fig. 2.2). The isothermal processes
proceed at the temperatures Ty, T,, and T';. Find the efficiency of
such a cycle, if in each isothermal expansion the gas volume increases
in the same proportion.

2.117. Find the efficiency of a cycle consisting of two isochoric
and two adiabatic lines, if the volume of the ideal gas changes
n = 10 times within the cycle. The working substance is nitrogen.
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2.118. Find the efficiency of a cycle consisting of two isobaric and
two adiabatic lines, if the pressure changes n times within the cycle.
The working substance is an ideal gas whose adiabatic exponent is
equal to y.

2.119. Anideal gas whose adiabatic exponent equals y goes through
a cycle consisting of two isochoric and two isobaric lines. Find the
efficiency of such a cycle, if the absolute temperature of the gas rises
n times both in the isochoric heating and in

the isobaric expansion. p 7
2.120. An ideal gas goes through a cycle
consisting of T,
(a) isochoric, adiabatic, and isothermal Z
lines;
(b) isobaric, adiabatic, and isothermal
lines, Iz
with the isothermal process proceeding at %
the minimum temperature of the whole cycle.
Find the efficiency of each cycle if the abso- Fig. 2.2.

lute temperature varies n-fold within the cycle.

2.121. The conditions are the same as in the foregoing problem
with the exception that the isothermal process proceeds at the maz-
imum temperature of the whole cycle.

2.122. An ideal gas goes through a cycle consisting of isothermal,
polytropic, and adiabatic lines, with the isothermal process proceed-
ing at the mazximum temperature of the whole cycle. Find the effic-
iency of such a cycle if the absolute temperature varies n-fold within
the cycle.

2.123. An ideal gas with the adiabatic exponent y goes through
a direct (clockwise) cycle consisting of adiabatic, isobaric, and isocho-
ric lines. Find the efficiency of the cycle if in the adiabatic process
the volume of the ideal gas

(a) increases n-fold; (b) decreases n-fold.

2.124. Calculate the efficiency of a cycle consisting of isothermal,
isobaric, and isochoric lines, if in the isothermal process the volume
of the ideal gas with the adiabatic exponent y

(a) increases n-fold; (b) decreases n-fold.

2.125. Find the efficiency of a cycle consisting of two isochoric and
two isothermal lines if the volume varies v-fold and the absolute
temperature t-fold within the cycle. The working substance is an
ideal gas with the adiabatic exponent y.

2.126. Find the efficiency of a cycle consisting of two isobaric and
two isothermal lines if the pressure varies n-fold and the absolute
temperature t-fold within the cycle. The working substance is an
ideal gas with the adiabatic exponent ¥.

2.127. An ideal gas with the adiabatic exponent y goes through
a cycle (Fig. 2.3) within which the absolute temperature varies
t-fold. Find the efficiency of this cycle.

2.128. Making use of the Clausius inequality, demonstrate that
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all cycles having the same maximum temperature 7T,,. and the
same minimum temperature 7T,,;, are less efficient compared to the
Carnot cycle with the same T',,,, and T p;n.

2.129. Making use of the Carnot theorem, show that in the case

of a physically uniform substance whose state is defined by the para-
meters 7 and V

where U (T, V) is the internal energy of the substance.

Instruction. Consider the infinitesimal Carnot cycle in the variables

, V.

2.130. Find the entropy increment of one mole of carbon dioxide
when its absolute temperature increases n = 2.0 times if the process
of heating is

(a) isochoric; (b) isobaric.

The gas is to be regarded as ideal.

2.131. The entropy of v = 4.0 moles of an ideal gas increases by
AS = 23 J/K due to the isothermal expansion. How many times
should the volume v = 4.0 moles of the gas
be increased? i)

2.132. Two moles of an ideal gas are cooled
isochorically and then expanded isobarically to
lower the gas temperature back to the initial val-
ue. Find the entropy increment of the gas if in
this process the gas pressure changed n=3.3
times.

2.133. Helium of mass m=1.7 g is expanded /
adiabatically n = 3.0 times and then compressed ‘<

isobarically down to the initial volume. O V
Find the entropy increment of the gas in this Fig. 2.3.
process.

2.134. Find the entropy increment of v = 2.0
moles of an ideal gas whose adiabatic exponent y = 1.30 if, as
a result of a certain process, the gas volume increased a = 2.0
times while the pressure dropped P = 3.0 times.,

2.135. Vessels 7 and 2 contain v = 1.2 moles of gaseous helium.
The ratio of the vessels’ volumes V,/V, = o = 2.0, and the ratio of
the absolute temperatures of helium in them 7,/T,= f = 1.5.
Assuming the gas to be ideal, find the difference of gas entropies in
these vessels, S, — S;.

2.136. One mole of an ideal gas with the adiabatic exponent y goes
through a polytropic process as a result of which the absolute tem-
perature of the gas increases t-fold. The polytropic constant equals n.
Find the entropy increment of the gas in this process.

2.137. The expansion process of v = 2.0 moles of argon proceeds
so that the gas pressure increases in direct proportion to its volume.
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Find the entropy increment of the gas in this process provided its
volume increases a = 2.0 times.

2.138. An ideal gas with the adiabatic exponent y goes through
a process p = p, — aV, where p, and a are positive constants,
and V is the volume. At what volume will the gas entropy have the
maximum value?

2.139. One mole of an ideal gas goes through a process in which
the entropy of the gas changes with temperature T as S = aT -
+ Cy In T, where a is a positive constant, Cy is the molar heat
capacity of this gas at constant volume. Find the volume dependence
of the gas temperature in this process if 7 = T, at V = V,.

2.140. Find the entropy increment of one mole of a Van der Waals
gas due to the isothermal variation of volume from V; to V,. The
Van der Waals corrections are assumed to be known.

2.141. One mole of a Van der Waals gas which had initially the
volume ¥V, and the temperature 7'; was transferred to the state with
the volume V, and the temperature T,. Find the corresponding
entropy increment of the gas, assuming its molar heat capacity
Cy to be known.

2.142. At very low temperatures the heat capacity of crystals is
equal to C = aT3, where a is a constant. Find the entropy of a crystal
as a function of temperature in this temperature interval.

2.143. Find the entropy increment of an aluminum bar of mass
m = 3.0 kg on its heating from the temperature 7, = 300 K up
to 7'y, = 600 K if in this temperature interval the specific heat capac-
ity of aluminum varies as ¢ = a + bT, where a = 0.77 J/(g-K),
b =0.46 mJ/(g-K?).

2.144. In some process the temperature of a substance depends on
its entropy S as T = aS™, where a and n are constants. Find the
corresponding heat capacity C of the substance as a function of S.
At what condition is C << 0?

2.145. Find the temperature T as a function of the entropy S
of a substance for a polytropic process in which the heat capacity of
the substance equals C. The entropy of the substance is known to be
equal to S, at the temperature 7,. Draw the approximate plots
T (S) for C >0 and C << 0.

2.146. One mole of an ideal gas with heat capacity Cy goes through
a process in which its entropy S depends on T as § = a/T, where o
is a constant. The gas temperature varies from 7; to 7T,. Find:

(a) the molar heat capacity of the gas as a function of its tempe-
rature;

(b) the amount of heat transferred to the gas;

(c) the work performed by the gas.

2.147. A working substance goes through a cycle within which
the absolute temperature varies n-fold, and the shape of the cycle
is shown in (a) Fig. 2.4a; (b) Fig. 2.4b, where T is the absolute
temperature, and S the entropy. Find the efficiency of each cycle.



2.148. One of the two thermally insulated vessels interconnected
by a tube with a valve contains v = 2.2 moles of an ideal gas. The
other vessel is evacuated. The valve having been opened, the gas
increased its volume n = 3.0 times. Find the entropy increment of
the gas.

2.149. A weightless piston divides a thermally insulated cylinder
into two equal parts. One part contains one mole of an ideal gas
with adiabatic exponent 7y, the other is evacuated. The initial gas
temperature is T',. The piston is released and the gas fills the whole

T T

b S
(@ )
Fig. 2.4.

volume of the cylinder. Then the piston is slowly displaced back to
the initial position. Find the increment of the internal energy and
the entropy of the gas resulting from these two processes.

2.150. An ideal gas was expanded from the initial state to the
volume V without any heat exchange with the surrounding bodies.
Will the final gas pressure be the same in the case of (a) a fast and
in the case of (b) a very slow expansion process?

2.151. A thermally insulated vessel is partitioned into two parts
so that the volume of one part is n = 2.0 times greater than that of
the other. The smaller part contains v; = 0.30 mole of nitrogen, and
the greater one v, = 0.70 mole of oxygen. The temperature of the
gases is the same. A hole is punctured in the partition and the gases
are mixed. Find the corresponding increment of the system’s entropy,
assuming the gases to be ideal.

2.152. A piece of copper of mass m, = 300 g with initial tem-
perature ¢; = 97 °C is placed into a calorimeter in which the water
of mass m, = 100 g is at a temperature ¢, = 7 °C. Find the entropy
increment of the system by the moment the temperatures equalize.
The heat capacity of the calorimeter itself is negligibly small.

2.153. Two identical thermally insulated vessels interconnected
by a tube with a valve contain one mole of the same ideal gas each.
The gas temperature in one vessel is equal to 7'; and in the other, T',.
The molar heat capacity of the gas of constant volume equals Cy.
The valve having been opened, the gas comes to a new equilibrium
Ztgte. Iaind the entropy increment AS of the gas. Demonstrate that

> 0.
2.154. N atoms of gaseous helium are enclosed in a cubic vessel
of volume 1.0 cm® at room temperature. Find:
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(a) the probability of atoms gathering in one half of the vessel;

(b) the approximate numerical value of /V ensuring the occurrence
of this event within the time interval ¢ &~ 10! years (the age of the
Universe).

2.155. Find the statistical weight of the most probable distribution
of ¥ = 10 identical molecules over two halves of the cylinder’s
volume. Find also the probability of such a distribution.

2.156. A vessel contains N molecules of an ideal gas. Dividing
mentally the vessel into two halves A and B, find the probability
that the half 4 contains n molecules. Consider the cases when V =5
and n =0, 1, 2, 3, 4, 5.

2.157. A vessel of volume V, contains ¥ molecules of an ideal
gas. Find the probability of n molecules getting into a certain separat-
ed part of the vessel of volume V. Examine, in particular, the case
V = V()/Q.

2.158. An ideal gas is under standard conditions. Find the diame-
ter of the sphere within whose volume the relative fluctuation of the
number of molecules is equal to = 1.0-10-3. What is the average
number of molecules inside such a sphere?

2.159. One mole of an ideal gas consisting of monatomic molecules
is enclosed in a vessel at a temperature 7, = 300 K. How many
times and in what way will the statistical weight of this system
(gas) vary if it is heated isochorically by AT = 1.0 K?

2.5. LIQUIDS., CAPILLARY EFFECTS

e Additional (capillary) pressure in a liquid under an arbitrary surface
(Laplace’s formula):

Ap=u (—R1—1-+-_;—2), (2.5a)

where o is the surface tension of a given liquid.
e Free energy increment of the surface layer of a liquid:

dF = a ds, (2.5b)

where dS is the area increment of the surface layer.

e Amount of heat required to form a unit area of the liquid surface layer
during the isothermal increase of its surface:

do.
2.160. Find the capillary pressure
(a) in mercury droplets of diameter d = 1.5 pm;
(b) inside a soap bubble of diameter d = 3.0 mm if the surface
tension of the soap water solution is & = 45 mN/m.
2.161. In the bottom of a vessel with mercury there is a round
hole of diameter d = 70 pm. At what maximum thickness of the
mercury layer will the liquid still not flow out through this hole?
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2.162. A vessel filled with air under pressure p, contains a soap
bubble of diameter d. The air pressure having been reduced isother-
mally n-fold, the bubble diameter increased n-fold. Find the surface
tension of the soap water solution.

2.163. Find the pressure in an air bubble of diameter d = 4.0 pm,
located in water at a depth & = 5.0 m. The atmospheric pressure
has the standard value p,.

2.164. The diameter of a gas bubble formed at the bottom of a pond
1s d = 4.0 um. When the bubble rises to the surface its diameter
increases n = 1.1 times. Find how deep is the pond at that spot.
The atmospheric pressure is standard, the gas expansion is assumed
to be isothermal.

2.165. Find the difference in height of mercury columns in two
communicating vertical capillaries whose diameters are d;, =
= 0.50 mm and d, = 1.00 mm, if the contact angle 6 = 138°.

2.166. A vertical capillary with inside diameter 0.50 mm is
submerged into water so that the length of its part protruding over
the water surface is equal to ~ = 25 mm. Find the curvature radius
of the meniscus.

2.167. A glass capillary of length [ = 110 mm and inside dia-
meter d = 20 um is submerged vertically into water. The upper end
of the capillary is sealed. The outside pressure is standard. To what
length z has the capillary to be submorged to make the water levels
inside and outside the capillary coincide?

2.168. When a vertical capillary of length ! with the sealed upper
end was brought in contact with the surface of a liquid, the level
of this liquid rose to the height k. The liquid densityis p, the inside
diameter of the capillary is d, the contact angle is 8, the atmospheric
pressure is p,. Find the surface tension of the liquid.

2.169. A glass rod of diameter d, = 1.5 mm is inserted sym-
metrically into a glass capillary with inside diameter d, = 2.0 mm.
Then the whole arrangement is vertically oriented and brought in
contact with the surface of water. To what height will the water rise
in the capillary?

2.170. Two vertical plates submerged partially in a wetting liquid
form a wedge with a very small angle 8. The edge of this wedge is
vertical. The density of the liquid is p, its surface tension is o, the
contact angle is 8. Find the height k&, to which the liquid rises, as a
function of the distance z from the edge.

2.171. A vertical water jet flows out of a round hole. One of the
horizontal sections of the jet has the diameter d = 2.0 mm while
the other section located ! = 20 mm lower has the diameter which
is n = 1.5 times less. Find the volume of the water flowing from
the hole each second.

2.172. A water drop falls in air with a uniform velocity. Find
the difference between the curvature radii of the drop’s surface at
the upger and lower points of the drop separated by the distance
h =23 mm.
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2.473. A mercury drop shaped as a round tablet of radius R
and thickness k is located between two horizontal glass plates. Assum-
ing that » <« R, find the mass m of a weight which has to be placed
on the upper plate to diminish the distance between the plates n-times.
The contact angle equals 8. Calculate m if R = 2.0 cm, 2 = 0.38 mm,
n = 2.0, and 6 = 135°.

2.174. Find the attraction force between two parallel glass plates,
separated by a distance A = 0.10 mm, after a water drop of mass
m = 70 mg was introduced between them. The wetting is assumed
to be complete.

2.175. Two glass discs of radius R = 5.0 cm were wetted with
water and put together so that the thickness of the water layer be-
tween them was 2 = 1.9 pm. Assuming the wetting to be complete,
find the force that has to be applied at right angles to the plates in
order to pull them apart.

2.176. Two vertical parallel glass plates are partially submerged
in water. The distance between the plates is d = 0.10 mm, and
their width isl = 12 cm. Assuming that the water between the
plates does not reach the upper edges of the plates and that the wetting
is complete, find the force of their mutual attraction.

2.177. Find the lifetime of a soap bubble of radius A connected
with the atmosphere through a capillary of length [ and inside
radius r. The surface tension is «, the viscosity coefficient of the
gas is 7.

2.17813 A vertical capillary is brought in contact with the water
surface. What amount of heat is liberated while the water rises
along the capillary? The wetting is assumed to be complete, the sur-
face tension equals c.

2.179. Find the free energy of the surface layer of

(a) a mercury droplet of diameter d = 1.4 mm;

(b) a soap bubble of diameter d = 6.0 mm if the surface tension
of the soap water solution is equal to o = 45 mN/m.

2.180. Find the increment of the free energy of the surface layer
when two identical mercury droplets, each of diameter d = 4.5 mm,
merge isothermally.

2.181. Find the work to be performed in order to blow a soap
bubble of radius R if the outside air pressure is equal to p, and
the surface tension of the soap water solution is equal to «.

2.182. A soap bubble of radius r is inflated with an ideal gas.
The atmospheric pressure is p,, the surface tension of the soap water
solution is a. Find the difference between the molar heat capacity
of the gas during its heating inside the bubble and the molar heat
capacity of the gas under constant pressure, C — Cp.

2.183. Cons1der1ng the Carnot cycle as applied to a 11qu1d film,
show that in an isothermal process the amount of heat required for
the formation of a unit area of the surface layer is equal to ¢ =
= —T+da/dT, where da/dT is the temperature derivative of the
surface tension.
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2.184. The surface of a soap film was increased isothermally by
Ao at a temperature 7. Knowing the surface tension of the soap
water solution o and the temperature coefficient do/dT, find the
increment

(a) of the entropy of the film’s surface layer;

(b) of the internal energy of the surface layer.

2.6. PHASE TRANSFORMATIONS

e Relations between Van der Waals constants and the parameters of the
critical state of a substance:

a 8a
Vi er=3b, pcr:W ) Tcr=m- (2.6a)

e Relation between the critical parameters for a mole of substance:
PerV i cr=(3/8) RTcr- (2.6b)

e Clausius-Clapeyron equation:
dp _ q12 2 G¢
ar ~ T (V,—Vp? (2.6¢)

where ¢, is the specific heat absorbed in the transformation 1 — 2, V{ and V,
are the specific volumes of phases 1 and 2.

2.185. A saturated water vapour is contained in a cylindrical
vessel under a weightless piston at a temperature ¢t = 100 °C. As
a result of a slow introduction of the piston a small fraction of the
vapour Am = 0.70 g gets condensed. What amount of work was
performed over the gas? The vapour is assumed to be ideal, the
volume of the liquid is to be neglected.

2.186. A vessel of volume ¥V = 6.0 ] contains water together with
its saturated vapour under a pressure of 40 atm and at a temperature
of 250 °C. The specific volume of the vapour is equal to V; = 50 l/kg
under these conditions. The total mass of the system water-vapour
equals m = 5.0 kg. Find the mass and the volume of the vapour.

2.187. The saturated water vapour is enclosed in a cylinder under
a piston and occupies a volume V, = 5.0 1 at the temperature ¢t =
= 100 °C. Find the mass of the liquid phase formed after the volume
under the piston decreased isothermally to V = 1.6 1. The saturated
vapour is assumed to be ideal.

2.188. A volume occupied by a saturated vapour is reduced iso-
thermally rn-fold. Find what fraction n of the final volume is occupied
by the liquid phase if the specific volumes of the saturated vapour
and the liquid phase differ by N times (N > n). Solve the same
problem under the condition that the final volume of the substance
corresponds to the midpoint of a horizontal portion of the isothermal
line in the diagram p, V.

2.189. An amount of water of mass m = 1.00 kg, boiling at stan-
dard atmospheric pressure, turns completely into saturated vapour.
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Assuming the saturated vapour to be an ideal gas find the increment
of entropy and internal energy of the system.

2.190. Water of mass m = 20 g is enclosed in a thermally insulat-
ed cylinder at the temperature of 0 °C under a weightless piston
whose area is S=410 cm2. The outside pressure is equal to
standard atmospheric pressure. To what height will the piston
rise when the water absorbs Q = 20.0 kJ of heat?

2.191. One gram of saturated water vapour is enclosed in a therm-
ally insulated cylinder under a weightless piston. The outside pres-
sure being standard, m = 1.0 g of water is introduced into the cyl-
inder at a temperature ¢, = 22 °C. Neglecting the heat capacity of
the cylinder and the friction of the piston against the cylinder’s
walls, find the work performed by the force of the atmospheric pres-
sure during the lowering of the piston.

2.192. If an additional pressure Ap of a saturated vapour over
a convex spherical surface of a liquid is considerably less than the
vapour pressure over a plane surface, then Ap = (p,/p;) 2c/r, where
P, and p; are the densities of the vapour and the liquid, « is the sur-
face tension, and r is the radius of curvature of the surface. Using
this formula, find the diameter of water droplets at which the satu-
rated vapour pressure exceeds the vapour pressure over the plane
surface by n = 1.0% at a temperature ¢t = 27 °C. The vapour is
assumed to be an ideal gas.

2.193. Find the mass of all molecules leaving one square centi-
metre of water surface per second into a saturated water vapour above
it at a temperature ¢ = 100 °C. It is assumed that n = 3.6% of
all water vapour molecules falling on the water surface are retained
in the liquid phase.

2.194. Find the pressure of saturated tungsten vapour at a tem-
perature 7 = 2000 K if a tungsten filament is known to lose a mass
u=12.10"*® g/(s-cm? from a unit area per unit time when
evaporating into high vacuum at this temperature.

2.195. By what magnitude would the pressure exerted by water
on the walls of the vessel have increased if the intermolecular attrac-
tion forces had vanished?

2.196. Find the internal pressure p; of a liquid if its density
p and specific latent heat of vaporization ¢ are known. The heat
g is assumed to be equal to the work performed against the forces
of the internal pressure, and the liquid obeys the Van der Waals
equation. Calculate p; in water.

2.197. Demonstrate that Eqs. (2.6a) and (2.6b) are valid for a
substance, obeying the Van der Waals equation, in critical
state.

Instruction. Make use of the fact that the critical state corresponds
to the point of inflection in the isothermal curve p (V).

2.198. Calculate the Van der Waals constants for carbon dioxide
if 17t§ critical temperature 7., = 304 K and critical pressure p,, =
== atm.
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2.199. Find the specific volume of benzene (Cgllg) in critical state
if its critical temperature 7., = 562 K and critical pressure p., =
= 47 atm.

2.200. Write the Van der Waals equation via the reduced para-
meters nt, v, and T, having taken the corresponding critical values
for the units of pressure, volume, and temperature. Using the equa-
tion obtained, find how many times the gas temperature exceeds its
critical temperature if the gas pressure is 12 times as high as critical
pressure, and the volume of gas is equal to half the critical volume.

2.201. Knowing the Van der Waals constants, find:

(a) the maximum volume which water of mass m = 1.00 kg can
occupy in liquid state;

(b) the maximum pressure of the saturated water vapour.

2.202. Calculate the temperature and density of carbon dioxide
in critical state, assuming the gas to be a Van der Waals one.

2.203. What fraction of the volume of a vessel must liquid ether
occupy at room temperature in order to pass into critical state when
critical temperature is reached? Ether
has T., = 467 K, p, = 35.5 atm, g
M = 74 g/mol.

2.204. Demonstrate that the straight
line 7-5 corresponding to the isother-
mal-isobaric phase transition cuts the
Van der Waals isotherm so that
areas J and II are equal (Fig. 2.5).

2.205. What fraction of water su-
percooled down to the temperature
t = —20 °C under standard pressure
turns into ice when the system passes
into the equilibrium state? At what
temperature of the supercooled water
does it turn into ice completely? _

2.206. Find the increment of the ice melting temperature in the
vicinity of 0 °C when the pressure is increased by ép = 1.00 atm.
The specific volume of ice exceeds that of water by'AV’ =0.091 cm?/g.

2.207. Find the specific volume of saturated water vapour under
standard pressure if a decrease of pressure by Ap = 3.2 kPa is known
to decrease the water boiling temperature by A7 = 0.9 K.

2.208. Assuming the saturated water vapour to be ideal, find
its pressure at the temperature 101.1 °C.

2.209. A small amount of water and its saturated vapour are en-
closed in a vessel at a temperature ¢ = 100 °C. How much (in per cent)
will the mass of the saturated vapour increase if the temperature of
the system goes up by AT = 1.5 K? Assume that the vapour is an
ideal gas and the specific volume of water is negligible as compared
to that of vapour. )

2.210. Find the pressure of saturated vapour as a function of
temperature p (T) if at a temperature T, its pressure equals p,.

Fig. 2.5.
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Assume that: the specific latent heat of vaporization q is independent
of T, the specific volume of liquid is negligible as compared to that
of vapour, saturated vapour obeys the equation of state for an ideal
gas. Investigate under what conditions these assumptions are permis-
sible.

2.211. An ice which was initially under standard conditions was
compressed up to the pressure p = 640 atm. Assuming the lowering
of the ice melting temperature to be a linear function of pressure
under the given conditions, find what fraction of the ice melted. The
specific volume of water isless than that of ice by AV’ = 0.09 cm?/g.

2.212. In the vicinity of the triple point the saturated vapour
pressure p of carbon dioxide depends on temperature 7 as log p =
= a — b/T, where aand b are constants. If p is expressed in atmo-
spheres, then for the sublimation process a = 9.05 and b = 1.80 kK,
and for the vaporization process a = 6.78 and b = 1.31 kK. Find:

(a) temperature and pressure at the triple point;

(b) the values of the specific latent heats of sublimation, vapori-
zation, and melting in the vicinity of the triple point.

2.213. Water of mass m = 1.00 kg is heated from the temperature
t;, = 10°C up to t, = 100 °C at which it evaporates completely.
Find the entropy increment of the system.

2.214. The ice with the initial temperature t, = 0 °C was first
melted, then heated to the temperature ¢, = 100 °C and evaporated.
Find the increment of the system’s specific entropy.

2.215. A piece of copper of mass m = 90 g at a temperature ¢, =
= 90 °C was placed in a calorimeter in which ice of mass 50 g was
at a temperature —3 °C. Find the entropy increment of the piece
of copper by the moment the thermal equilibrium is reached.

2.216. A chunk of ice of mass m;, = 100 g at a temperature ¢, =
= 0 °C was placed in a calorimeter in which water of mass m, =
= 100 g was at a temperature ¢,. Assuming the heat capacity of
the calorimeter to be negligible, find the entropy increment of the
system by the moment the thermal equilibrium is reached. Consider
two cases: (a) t, = 60 °C; (b) ¢, = 94 °C.

2.217. Molten lead of mass m = 5.0 g at a temperature ¢, = 327 °C
(the melting temperature of lead) was poured into a calorimeter packed
with a large amount of ice at a temperature ¢, = 0 °C. Find the ent-
ropy increment of the system lead-ice by the moment the thermal
equilibrium is reached. The specific latent heat of melting of lead is
equal to ¢ = 22.5 J/g and its specific heat capacity is equal to ¢ =
= 0.125 J/(g-K).

2.218. A water vapour filling the space under the piston of a cylin-
der, is compressed (or expanded) so that it remains saturated all
the time, being just on the verge of condensation. Find the molar
heat capacity C of the vapour in this process as a function of tem-
perature 7', assuming the vapour to be an ideal gas and neglecting
the specific volume of water in comparison with that of vapour.
Calculate C at a temperature t = 100 °C.
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2.219. One mole of water being in equilibrium with a negligible
amount of its saturated vapour at a temperature T; was completely
converted into saturated vapour at a temperature T',. Find the ent-
ropy increment of the system. The vapour is assumed to be an ideal
gas, the specific volume of the liquid is negligible in comparison with
that of the vapour.

2.7. TRANSPORT PHENOMENA

e Relative number of gas molecules traversing the distance s without col-
lisions:
N[Noy=e* (2.7a)
where A is the mean free path.
e Mean free path of a gas molecule:
1
ho= VETTE (2.7b)
where d is the effective diameter of a molecule, and n is the number of mole-
cules per unit volume.
e Coefficients of diffusion D, viscosity n, and heat conductivity x of gases:

1 1 1
D= zmhk 1= @, x= 5 Whecy, (2.7c)

where p is the gas density, and ¢y, is its specific heat capacity at constant volume.

e Friction force acting on a unit drea of plates during their motion parallel
to each other in a highly rarefied gas:

1
F= s @plu— ul (2.7d)

where u, and u, are the velocities of the plates.

e Density of a thermal flux transferred between two walls by highly
rarefied gas:

1
q='g‘(")PcvlT1—'T2|, (2.7e)
where T, and T, are the temperatures of the walls,

2.220. Calculate what fraction of gas molecules

(a) traverses without collisions the distances exceeding the mean
free path A;

(b) has the free path values lying within the interval from %
to 2A.

2.221. A narrow molecular beam makes its way into a vessel
filled with gas under low pressure. Find the mean free path of mole-
cules if the beam intensity decreases 1-fold over the distance Al

2.222. Let adt be the probability of a gas molecule experiencing
a collision during the time interval d¢; o is a constant. Find:

(a) the probability of a molecule experiencing no collisions during
the time interval ¢;

(b) the mean time interval between successive collisions.

2.223. Find the mean free path and the mean time interval be-
tween successive collisions of gaseous nitrogen molecules

(a) under standard conditions;
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(b) at temperature t = 0 °C and pressure p = 1.0 nPa(such a pres-
sure can be reached by means of contemporary vacuum pumps).

2.224. How many times does the mean free path of nitrogen mole-
cules exceed the mean distance between the molecules under stan-
dard conditions?

2.225. Find the mean free path of gas molecules under standard
conditions if the Van der Waals constant of this gas is equaltod =
= 40 ml/mol. )

2.226. An acoustic wave propagates through nitrogen under stan-
dard conditions. At what frequency will the wavelength be equal
to the mean free path of the gas molecules?

2.227. Oxygen is enclosed at the temperature 0 °C in a vessel
with the characteristic dimension ! = 10 mm (this is the linear
dimension determining the character of a physical process in ques-
tion). Find:

(a) the gas pressure below which the mean free path of the mole-
cules A > [;

(b) the corresponding molecular concentration and the mean
distance between the molecules.

2.228. For the case of nitrogen under standard conditions find:

(a) the mean number of collisions experienced by each molecule
per second;

(b) the total number of collisions occurring between the molecules
within 1 cm® of nitrogen per second.

2.229. How does the mean free path A and the number of collisions
of each molecule per unit time v depend on the absolute temperature
of an ideal gas undergoing

(a) an isochoric process;

(b) an isobaric process?

2.230. As a result of some process the pressure of an ideal gas
increases n-fold. How many times have the mean free path A and
the number of collisions-of each molecule per unit time v changed
and how, if the process is

(a) isochoric; (b) isothermal?

2.231. An ideal gas consisting of rigid diatomic molecules goes
through an adiabatic process. How do the mean free path A and the
number of collisions of each molecule per second v depend in this
process on .

(a) the volume V; (b) the pressure p; (c) the temperature T?

2.232. An ideal gas goes through a polytropic process with ex-
ponent n. Find the mean free path A and the number of collisions of
each molecule per second v as a function of

(a) the volume V; (b) the pressure p; (c) the temperature T.

2.233. Determine the molar heat capacity of a polytropic process
through which an ideal gas consisting of rigid diatomic molecules
goes and in which the number of collisions between the molecules
remains constant

(a) in a unit volume; (b) in the total volume of the gas.
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2.234. An ideal gas of molar mass M is enclosed in a vessel of
volume ¥V whose thin walls are kept at a constant temperature 7.
At a moment ¢ = 0 a small hole of area S is opened, and the gas
starts escaping into vacuum. Find the gas concentration » as a func-
tion of time ¢ if at the initial moment n (0) = n,,.

2.235. A vessel filled with gas is divided into two equal parts
1 and 2 by a thin heat-insulating partition with two holes. One
hole has a small diameter, and the other has a very large diameter
(in comparison with the mean free path of molecules). In part 2
the gas is kept at a temperature 7 times higher than that of part 1.
How will the concentration of molecules in part 2 change and how
many times after the large hole is closed?

2.236. As a result of a certain process the viscosity coefficient of
an ideal gas increases a = 2.0 times and its diffusion coefficient
p = 4.0 times. How does the gas pressure change and how many
times?

2.237. How will a diffusion coefficient D and the viscosity coeffi-
cient v of an ideal gas change if its volume increases n times:

(a) isothermally; (b) isobarically?

2.238. An ideal gas consists of rigid diatomic molecules. How will
a diffusion coefficient D and viscosity coefficient v change and how
many times if the gas volume is decreased adiabatically n = 10 times?

2.239. An ideal gas goes through a polytropic process. Find the
polytropic exponent n if in this process the coefficient

(a) of diffusion; (b) of viscosity; (c) of heat conductivity remains
constant.

2.240. Knowing the viscosity coefficient of helium under standard
conditions, calculate the effective diameter of the helium atom.

2.241. The heat conductivity of helium is 8.7 times that of argon
(under standard conditions). Find the ratio of effective diameters
of argon and helium atoms.

2.242. Under standard conditions helium fills up the space between
two long coaxial cylinders. The mean radius of the cylinders is equal
to R, the gap between them is equal to AR, with AR < R. The

outer cylinder rotates with a fairly low angular velocity @ about
the stationary inner cylinder. Find the moment of friction forces
acting on a unit length of the inner cylinder. Down to what magnitude
should the helium pressure be lowered (keeping the temperature cons-
tant) to decrease the sought moment of friction forces n — 10 times
if AR =6 mm?

2.243. A gas fills up the space between two long coaxial cylinders
of radii R, and R,, with R, << R,. The outer cylinder rotates with
a fairly low angular velocity ® about the stationary inner cylinder.
The moment of friction forces acting on a unit length of the inner
cylinder is equal to N,. Find the viscosity coefficient 1 of the gas
taking into account that the friction force acting on a unit area of the

cylindrical surface of radius r is determined by the formula ¢ =
= nr (0w/or).
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2.244. Two identical parallel discs have a common axis anq are
located at a distance 4 from each other. The radius of each disc is
equal to a, with a > k. One disc is rotated‘wnh a low angular veloc-
ity o relative to the other, stationary, dl.SC. ‘Flnd tl}e moment of
friction forces acting on the stationary disc if the viscosity coeffi-
cient of the gas between the discs is equal to u. »

2.245. Solve the foregoing problem, assuming that the discs
are located in an ultra-rarefied gas of molar mass M, at temperature T

under pressure p.
ang.246. Mall)king usgof Poiseuille’s equation (1.7d), find the mass
u of gas flowing per unit time through thg pipe of length { and radius a
if constant pressures p, and p, are maintained at its enfls.

2.247. One end of arod, enclosed in a thermally insulating §heath,
is kept at a temperature Ty while the other, at T',. The rod is com-
posed of two sections whose lengths are /; and I, and heat cgnductlv—
ity coefficients %, and x,. Find the temperature of the interface.

2.248. Two rods whose lengths are [, and I, and heat conductivity
coefficients %, and x, are placed end to end. Find the heat conductivity
coefficient of a uniform rod of length I,-+I, whose conductivity
is the same as that of the system of these two rods. The lateral surfaces
of the rods are assumed to be thermally insulated.

2.249. A rod of length I with thermally insulated lateral surface
consists of material whose heat conductivity coefficient varies with
temperature as ®» = /7T, where a is a constant. Thg ends of the rod
are kept at temperatures I'; and T',. Find the function T.(x), where
z is the distance from the end whose temperature is Ty, and

flow deunsity.

th;.gg(&)l.t Two chunkz of metal with heat capacitigs C, and C, are
interconnected by a rod of length [ and cross—sect.lonal area S_ and
fairly low heat conductivity ». The whole system is thermally insu-
lated from the environment. At a moment ¢ = 0 the temperature
difference between the two chunks of metal equals (AT),. Assuming
the heat capacity of the rod to be negligible, ﬁnd'the temperature
difference between the chunks as a function of time.

2.251. Find the temperature distribution in a substance placed
between two parallel plates kept at temperatures T, and T,. Th(;
plate separation is equal to I, the heat conductivity coefficient o

bstance » &<V T. _
th.e‘}..ZSgZ.SThe space l/between two large horizontal plates is filled
with helium. The plate separation equals ! = 50 mm. The lzg)wiaf
plate is kept at a temperature 7, = 290 K, the upper, at Ty =
—= 330 K. Find the heat flow density if the gas pressure is close
andard.

t02?;53. The space between two large parallel plates separated by
a distance ! = 5.0 mm is filled with helium under a pressure p =
= 1.0 Pa. One plate is kept at a temperature t; = 17 °C andl‘the
other, at a temperature ¢, = 37 °C. Find the mean free path of helium
atoms and the heat flow density.
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2.254, Find the temperature distribution in the space between
two coaxial cylinders of radii R, and R, filled with a uniform heat
conducting substance if the temperatures of the cylinders are constant
and are equal to T, and T, respectively.

2.255. Solve the foregoing problem for the case of two concentric
spheres of radii R, and R, and temperatures T, and T,.

2.256. A constant electric current flows along a uniform wire
with cross-sectional radius R and heat conductivity coefficient x.
A unit volume of the wire generates a thermal power w. Find the
temperature distribution across the wire provided the steady-state
temperature at the wire surface is equal to T,.

. 2.257. The thermal power of density w is generated uniformly
1ns1d9 a uniform sphere of radius R and heat conductivity coefficient
%. Find the temperature distribution in the sphere provided the

steady-state temperature at its surface is equal to T7,.

PART THREE

ELECTRODYNAMICS

3.1. CONSTANT ELECTRIC FIELD IN VACUUM
e Strength and potential of the field of a point charge g¢:

__1 g _ 1 4
= Te,g = T, Q= et . (3.1a)
e Relation between field strength and potential:

E= —Vo, (3.1b)

i.e. field strength is equal to the antigradient of the potential.
e Gauss’s theorem and circulation of the vector E:

<§>E ds = gle,, (&E dr = 0. (3.1¢)

e Potential and strength of the field of a point dipole with electric mo-
ment p:
1 pr 1

= 2 = 2 1T 3cost0 )
=T 5 P V' 1+43cos?b, (3.1d)

where 0 is the angle between the vectors r and p.
e Energy W of the dipole p in an external electric field, and the moment
N of forces acting on the dipole:

W = —pE, N = [pE]. (3.1e)
e Force F acting on a dipole, and its projection F:
F=p%, Faep-VEsg 3.16)

where 9E/al is the derivative of the vector E with respect to the dipole direction,
VE, is the gradient of the function E,.

3.1. Calculate the ratio of the electrostatic to gravitational inter-

" action forces between two electrons, between two protons. At what

value of the specific charge g/m of a particle would these forces be-
come equal (in their absolute values) in the case of interaction of
identical particles?

3.2. What would be the interaction force between two copper
spheres, each of mass 1 g, separated by the distance 1 m, if the total
electronic charge in them differed from the total charge of the nuclei
by one per cent?

3.3. Two small equally charged spheres, each of mass m, are
suspended from the same point by silk threads of length I. The
distance between the spheres z < I. Find the rate dg/dt with which
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the charge leaks off each sphere if their approach velocity varies as
v= al} z, where a is a constant.

3.4. Two positive charges g, and g, are located at the points with
radius vectors r; and r,. Find a negative charge g; and a radius vector
ry of the point at which it has to be placed for the force acting on
each of the three charges to be equal to zero.

3.5. A thin wire ring of radius r has an electric charge g. What
will be the increment of the force stretching the wire if a point charge
g, is placed at the ring’s centre?

3.6. A positive point charge 50 pC is located in the plane xy
at the point with radius vector r, = 2i + 3j, where i and j are
the unit vectors of the z and y axes. Find the
vector of the electric field strength E and its

magnitude at the point with radius vector AN /7?‘*‘]
r = 8i — 5j. Here r, and r are expressed in ll \‘L\’ P
metres. RN
3.7. Point charges g and —q are located at the AN “
vertices of a square with diagonals 2/ as shown _, 4 _____ g

in Fig. 3.1. Find the magnitude of the electric *
field strength at a point located symmetrically
with respect to the vertices of the square at a
distance z from its centre.

3.8. A thin half-ring of radius R = 20 cm is uniformly charged
with a total charge ¢ = 0.70 nC. Find the magnitude of the electric
field strength at the curvature centre of this half-ring.

3.9. A thin wire ring of radius r carries a charge g. Find the magni-
tude of the electric field strength on the axis of the ring as a function
of distance [ from its centre. Investigate the obtained function at
1> r. Find the maximum strength magnitude and the correspond-
ing distance [. Draw the approximate plot of the function E(D).

3.10. A point charge g is located at the centre of a thin ring of
radius R with uniformly distributed charge —q. Find the magnitude
of the electric field strength vector at the point lying on the axis
of the ring at a distance z from its centre, if z » R.

3.11. A system consists of a thin charged wire ring of radius R
and a very long uniformly charged thread oriented along the axis
of the ring, with one of its ends coinciding with the centre of the
ring. The total charge of the ring is equal to g. The charge of the
thread (per unit length) is equal to A. Find the interaction force be-
tween the ring and the thread.

3.12. A thin nonconducting ring of radius R has a linear charge
density A = A, cos @, where A, is a constant, ¢ is the azimuthal
anglé. Find the magnitude of the electric field strength

(a) at the centre of the ring;

(b) on the axis of the ring as a function of the distance z from its
centre. Investigate the obtained function at x> R.

3.13. A thin straight rod of length 2a¢ carrying a uniformly distri-
buted charge g is located in vacuum. Find the magnitude of the
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electric field strength as a function of the distance r from the rod’s
centre along the straight line

(a) perpendicular to the rod and passing through its centre;

(b) coinciding with the rod’s direction (at the points lying outside
the rod).

Investigate the obtained expressions at r > a.

3.14. A very long straight uniformly charged thread carries
a charge A per unit length. Find the magnitude and direction of
the electric field strength at a point which is at a distance y from
the thread and lies on the perpendicular passing through one of the
thread’s ends.

3.15. A thread carrying a uniform charge A per unit length has
the configurations shown in Fig. 3.2 @ and b. Assuming a curvature

@
Fig. 3.2, Fig. 3.3.

radius R to be considerably less than the length of the thread, find
the magnitude of the electric field strength at the point O.

3.16. A sphere of radius r carries a surface charge of density ¢ =
= ar, where a is a constant vector, and r is the radius vector of
a point of the sphere relative to its centre. Find the electric field
strength vector at the centre of the sphere.

3.17. Suppose the surface charge density over a sphere of radius R
depends on a polar angle 6 as ¢ = o, cos 8, where o, is a positive
constant. Show that such a charge distribution can be represented as
a result of a small relative shift of two uniformly charged balls
o.f radius R whose charges are equal in magnitude and opposite in
sign. Resorting to this representation, find the electric field strength
vector inside the given sphere.

3.18. Find the electric field strength vector at the centre of a ball
of radius R with volume charge density p = ar, where a is a constant
vector, and r is a radius vector drawn from the ball’s centre.

3.19. A very long uniformly charged thread oriented along the
axis of a circle of radius R rests on its centre with one of the ends.
The charge of the thread per unit length is equal to A. Find the flux
of the vector E across the circle area.

3.20. Two point charges ¢ and —gq are separated by the distance
21 (Fig. 3.3). Find the flux of the electric field strength vector across
a circle of radius R.

3.21. A ball of radius R is uniformly charged with the volume
density p. Find the flux of the electric field strength vector across
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the ball's section formed by the plane located at a distance ro << R
from the centre of the ball.

3.22. Each of the two long parallel threads carries a uniform
charge A per unit length. The threads are separated by a distance I.
Find the maximum magnitude of the electric field strength in the
symmetry plane of this system located between the threads.

3.23. An infinitely long cylindrical surface of circular cross-
section is uniformly charged lengthwise with the surface density
¢ = 0, cos @, where @ is the polar angle of the cylindrical coordinate
system whose z axis coincides with the axis of the given surface.
Find the magnitude and direction of the electric field strength vector
on the z axis.

3.24. The electric field strength depends only on the z and y coor-
dinates according to the law E = a (zi -+ yi)/(2? -+ y*), where a
is a constant, i and j are the unit vectors of the z and y axes. Find
the flux of the vector E through a sphere of radius R with its centre
at the origin of coordinates.

3.25. A ball of radius R carries a positive charge whose volume
density depends only on a separation r from the ball's centre as
p= po (1 — r/R), where p, is a constant. Assuming the permittivities
of the ball and the environment to be equal to unity, find:

(a) the magnitude of the electric field strength as a function of the
distance r both inside and outside the ball;

(b) the maximum intensity £, ,, and the corresponding distance ry,.

3.26. A system consists of a ball of radius R carrying a spherically
symmetric charge and the surrounding space filled with a charge of
volume density p = a/r, where o is a constant, r is the distance
from the centre of the ball. Find the ball’s charge at which the mag-
nitude of the electric field strength vector is independent of r outside
the ball. How high is this strength? The permittivities of the ball
and the surrounding space are assumed to be equal to unity.

3.27. A space is filled up with a charge with volume density

= poe~®%, where p, and a are positive constants, r is the distance
from the centre of this system. Find the magnitude of the electric
field strength vector as a function of r. Investigate the obtained expres-
sion for the small and large values of r, i.e. at ar® < 1 and ar® > 1.

3.28. Inside a ball charged uniformly with volume density p
there is a spherical cavity. The centre of the cavity isdisplaced with
respect to the centre of the ball by a distance a. Find the field strength
E inside the cavity, assuming the permittivity equal to unity.

3.29. Inside an infinitely long circular cylinder charged uniformly
with volume density p there is a circular cylindrical cavity. The
distance between the axes of the cylinder and the cavity is equal
to a. Find the electric field strength E inside the cavity. The permit-
tivity is assumed to be equal to unity.

3.30. There are two thin wire rings, each of radius R, whose axes
coincide. The charges of the rings are ¢ and —g. Find the potential
difference between the centres of the rings separated by a distance a.
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3.31. There is an infinitely long straight thread carrying a charge
with linear density A = 0.40 pC/m. Calculate the potential difference
between points 7 and 2 if point 2 is removed n = 2.0 times farther
from the thread than point I.

3.32. Find the electric field potential and strength at the centre
of a hemisphere of radius R charged uniformly with the surface
density o.

3.33. A very thin round plate of radius R carrying a uniform sur-
face charge density o is located in vacuum. Find the electric field
potential and strength along the plate’s axis as a function of a dis-
tance ! from its centre. Investigate the obtained expression at [ — 0
and > R.

3.34. Find the potential ¢ at the edge of a thin disc of radius R
carrying the uniformly distributed charge with surface densi-
ty o.

3.35. Find the electric field strength vector if the potential of
this field has the form ¢ = ar, where a is a constant vector, and r
is the radius vector of a point of the field.

3.36. Determine the electric field strength vector if the potential
of this field depends on z, y coordinates as

a) ¢ = a (2* — y*); (b) ¢ = azy,
where @ is a constant. Draw the approximate shape of these fields
.using lines of force (in the z, y plane).

3.37. The potential of a certain electrostatic field has the form

@ = a (z® + y?) + bz?, where a and b are constants. Find the mag-
nitude and direction of the electric field strength vector. What shape
have the equipotential surfaces in the following cases:

(aya>0,b=>0; (b) a>0, b<<0?

3.38. A charge ¢ is uniformly distributed over the volume of
a sphere of radius R. Assuming the permittivity to be equal to unity
throughout, find the potential

(a) at the centre of the sphere;

(b) inside the sphere as a function of the distance r from its centre.

3.39. Demonstrate that the potential of the field generated by
a dipole with the electric moment p (Fig. 3.4) may be represented as
¢ = pr/4dmne,®, where r is the radius vector.

Using this expression, find the magnitude of the %3
electric field strength vector as a function of r 2z,
and 0. {

3.40. A point dipole with an electric moment p 4 r
oriented in the positive direction of the z axis is
located at the origin of coordinates. Find the p
projections E;and E, of the electric field strength
vector (on the plane perpendicular to the z axis at Fig. 3.4

the point S (see Fig. 3.4)). At which points is E
perpendicular to p?

3.41. A point electric dipole with a moment p is placed in the
external uniform electric field whose strength equals E,, with

108



p 14 Eo. In this case one of the equipotential surfaces enclosing the
dipole forms a sphere. Find the radius of this sphere.

3.42. Two thin parallel threads carry a uniform charge with linear
densities A and —A. The distance between the threads is equal to [.
Find the potential of the electric field and the magnitude of its strength
vector at the distance 7 > I at the angle 8 to the vector 1 (Fig. 3.5).

3.43. Two coaxial rings, each of radius R, made of thin wire are
separated by a small distance I (! < R) and carry the charges g and
—gq. Find the electric field potential and strength at the axis of the

.Z’T ‘%

Fig. 3.5. Fig. 3.6. Fig. 3.7.

system as a function of the z coordinate (Fig. 3.6). Show in the same
drawing the approximate plots of the functions obtained. Investigate
these functions at |z | > R.

3.44. Two infinite planes separated by a distance [ carry a uniform
surface charge of densities 0 and —o (Fig. 3.7). The planes have
round coaxial holes of radius R, with I <« R. Taking the origin
O and the z coordinate axis as shown in the figure, find the potential
of the electric field and the projection of its strength vector E, on the
axes of the system as functions of the z coordinate. Draw the approx-
imate plot @ (z).

3.45. An electric capacitor consists of thin round parallel plates,
each of radius R, separated by a distance I (! € R) and uniformly
charged with surface densities ¢ and —o. Find the potential of the
electric field and the magnitude of its strength vector at the axes
of the capacitor as functions of a distance z from the plates ifz >
Investigate the obtained expressions at z > R.

3.46. A dipole with an electric moment p is located at a distance
r from a long thread charged uniformly with a linear density A.
Find the force F acting on the dipole if the vector p is oriented

(a) along the thread;

(b) along the radius vector r;

(c) at right angles to the thread and the radius vector r.

3.47. Find the interaction force between two water molecules
separated by a distance I = 10 nm if their electric moments are
oriented along the same straight line. The moment of each molecule
equals p = 0.62-10-* C-m.

3.48. Find the potential ¢ (z, y) of an electrostatic field E =
= a (yi -+ zj), where a is a constant, i and j are the unit vectors
of the =z and y axes.
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3.49. Find the potential ¢ (z, y) of an electrostatic field E =
= 2azyi + a (2® — y?) §j, where a is a constant, i and j are the unit
vectors of the z and y axes.

3.50. Determine the potential ¢ (z, y, z) of an electrostatic field
E = ayi + (ax + b2) § + byk, where a and b are constants, i, j, k
are the unit vectors of the axes z, y, z.

3.51. The field potential in a certain region of space depends only
on the x coordinate as ¢ = —ax® - b, where a and b are constants.
Find the distribution of the space charge p ().

3.52. A uniformly distributed space charge fills up the space be-
tween two large parallel plates separated by a distance d. The poten-
tial difference between the plates is equal to Ag. At what value of
charge density p is the field strength in the vicinity of one of the
plates equal to zero? What will then be the field strength near
the other plate?

3.53. The field potential inside a charged ball depends only on
the distance from its centre as ¢ = ar? - b, where a and b are cons-
tants. Find the space charge distribution p (r) inside the ball.

3.2. CONDUCTORS AND DIELECTRICS
IN AN ELECTRIC FIELD

e Electric field strength near the surface of a conductor in vacuum:

E, = dle,. (3.2a)
e Flux of polarization P across a closed surface:
(&P s = —g, (3.2b)

where ¢’ is the algebraic sum of bound charges enclosed by this surface.
e Vector D and Gauss's theorem for it:

D = &,E - P, §D ds = gq, (3.2¢)

where g is the algebraic sum of extraneous charges inside a closed surface.
e Relations at the boundary between two dielectrics:

Pyp—Pip=—0'y Dyn—Dip=0, Ey=E,, (3.2d)
where ¢’ and o are the surface densities of bound and extraneous charges, and
the unit vector n of the normal is directed from medium 1 to medium 2.

e In isotropic dielectrics:

P=1xeE, D= ¢egyE, e=1-+ x. (3.2e)
e In the case of an isotropic uniform dielectric filling up all the space

between the equipotential surfaces:
E = Ee. (3.21)
3.5}1. A small ball is suspended over an infinite horizontal con-
ducting plane by means of an insulating elastic thread of stiffness k.
As soon as the ball was charged, it descended by z cm and its sepa-

ratilon from the plane became equal to I. Find the charge of the
ball.

111



3.95. A point charge g is located at a distance ! from the infinite
conducting plane. What amount of work has to be performed in
order to slowly remove this charge very far from the plane.

3.56. Two point charges, ¢ and —gq, are separated by a distance [,
both being located at a distance /2 from the infinite conducting
plane. Find:

(a) the modulus of the vector of the electric force acting on each
charge;

(b) the magnitude of the electric field strength vector at the mid-
point between these charges.

3.57. A point charge g is located between two mutually perpendi-
cular conducting half-planes. Its distance from each half-plane
is equal to /. Find the modulus of the vector of the force acting
on the charge.

3.58. A point dipole with an electric moment p is located at
a distance ! from an infinite conducting plane. Find the modulus
of the vector of the force acting on the dipole if the vector p is
perpendicular to the plane.

3.59. A point charge ¢ is located at a distance ! from an infinite
conducting plane. Determine the surface density of charges induced
on the plane as a function of separation r from the base of the perpen-
dicular drawn to the plane from the charge.

3.60. A thin infinitely long thread carrying a charge A per unit
length is oriented parallel to the infinite conducting plahe. The
distance between the thread and the plane is equal to [. Find:

(a) the modulus of the vector of the force acting on a unit length
of the thread;

(b) the distribution of surface charge density o (z) over the plane,
where z is the distance from the plane perpendicular to the conducting
surface and passing through the thread.

3.61. A very long straight thread is oriented at right angles to
an infinite conducting plane; its end is separated from the plane
by a distance I. The thread carries a uniform charge of linear den-
sity A. Suppose the point O is the trace of the thread on the plane.
Find the surface density of the induced charge on the plane

(a) at the point O;

(b) as a function of a distance r from the point O.

3.62. A thin wire ring of radius R carries a charge g. The ring
is oriented parallel to an infinite conducting plane and is separated
by a distance [ from it. Find:

(a) the surface charge density at the point of the plane symmetrical
with respect to the ring;

(b) the strength and the potential of the electric field at the centre
of the ring.

3.63. Find the potential ¢ of an uncharged conducting sphere out-
side of which a point charge ¢ is located at a distance ! from the
sphere’s centre.
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3.64. A point charge g is located at a distance r from the centre O
of an uncharged conducting spherical layer whose inside and outside
radii are equal to R, and R, respectively. Find the potential at
the point O if r << R,.

3.65. A system consists of two concentric conducting spheres,
with the inside sphere of radius a carrying a positive charge g;.
What charge g, has to be deposited on the outside sphere of radius b
to reduce the potential of the inside sphere to zero? How does the
potential ¢ depend in this case on a distance r from the centre of
the system? Draw the approximate plot of this dependence.

3.66. Four large metal plates are located at a small distance d
from one another as shown in Fig. 3.8. The extreme plates are inter-

7
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Fig. 3.8.

connected by means of a conductor while a potential difference
Ag is applied to internal plates. Find:

(a) the values of the electric field strength between neighbouring
plates;

(b) the total charge per unit area of each plate.

3.67. Two infinite conducting plates 7 and 2 are separated by
a distance I. A point charge g is located between the plates at a dis-
tance z from plate /. Find the charges induced on each plate.

3.68. Find the electric force experienced by a charge reduced
to a unit area of an arbitrary conductor if the surface density of the .
charge equals o.

3.69. A metal ball of radius R = 1.5 cm has a charge ¢ = 10 pC.
Find the modulus of the vector of the resultant force acting on a charge
located on one half of the ball.

3.70. When an uncharged conducting ball of radius R is placed
in an external uniform electric field, a surface charge density ¢ =
= g, cos 0 is induced on the ball’s surface (here o, is a constant,
0 is a polar angle). Find the magnitude of the resultant electric force
acting on an induced charge of the same sign.

3.71. An electric field of strength £ = 1.0 kV/cm produces polari-
zation in water equivalent to the correct orientation of only one out
of N molecules. Find N. The electric moment of a water molecule
equals p = 0.62-10%® C-.m.

3.72. A non-polar molecule with polarizability P is located at
a great distance [ from a polar molecule with electric moment p.
Find the magnitude of the interaction force between the molecules
if the vector p is oriented along a straight line passing through both
molecules.
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3.73. A non-polar molecule is located at the axis of a thin uniformly
charged ring of radius R. At what distance z from the ring’s centre
is the magnitude of the force F acting on the given molecule

(a) equal to zero; (b) maximum?

Draw the approximate plot F, (z).

3.74. A point charge g is located at the centre of a ball made of
uniform isotropic dielectric with permittivity e. Find the polari-
zation P as a function of the radius vector r relative to the centre
of the system, as well as the charge ¢' inside a sphere whose
radjus is less than the radius of the ball.

3.75. Demonstrate that at a dielectric-conductor interface the
surface density of the dielectric’s bound charge o = —o (e — e,
where ¢ is the permittivity, o is the surface density of the charge
on the conductor.

3.76. A conductor of arbitrary shape, carrying a charge g, is
surrounded with uniform dielectric of permittivity e (Fig. 3.9).

Fig. 3.9. Fig. 3.10.

Find the total bound charges at the inner and outer surfaces of the
dielectric. .

3.77. A uniform isotropic dielectric is shaped as a spherical layer
with radii @ and b. Draw the approximate plots of the electric field
strength E and the potential ¢ vs the distance r from the centre of
the layer if the dielectric has a certain positive extraneous charge
distributed uniformly:

(a) over the internal surface of the layer; (b) over the volume of
the layer.

3.78. Near the point A (Fig. 3.10) lying on the boundary between
glass and vacuum the electric field strength in vacuum is equal to
E, = 10.0 V/m, the angle between the vector E, and the normal
n of the boundary line being equal to o, = 30°. Find the field strength
E in glass near the point A, the angle a between the vector E and n,
as well as the surface density of the bound charges at the point A.

3.79. Near the plane surface of a uniform isotropic dielectric
with permittivity & the electric field strength in vacuum is equal
to E,, the vector E, forming an angle 8 with the normal of the dielec-
tric’s surface (Fig. 3.11). Assuming the field to be uniform both inside
and outside the dielectric, find:

(a) the flux of the vector E through a sphere of radius R with
centre located at the surface of the dielectric;
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(b) the circulation of the vector D around the closed path T
of length l (see Fig. 3.11) whose plane is perpendicular to the surface
of the dielectric and parallel to the vector E,.
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Fig. 3.11.

' 3.89. An infinite plane of uniform dielectric with permittivity e
is uniformly charged with extraneous charge of space density p
The thickness of the plate is equal to 2d. Find: '

(a) the magnitude of the electric field strength and the potential
as fupctions of distance I from the middle point of the plane (where
the potential is assumed to be equal to zero); having chosen the
z coordinate axis perpendicular to the plate, draw the approximate
plots of the projection £, (x) of the vector E and the potential ¢ (z);

(b) the surface and space densities of the bound charge. ’

3.$1. Extraneous charges are uniformly distributed with space
density p >0 over a ball of radius R made of uniform isotropic
dielectric with permittivity e. Find:

d'(?) the nflagnit‘lxlde of the felectric field strength as a function of

istance r from the centre of the ball, i
B ] e 11; draw the approximate plots

(b) the space and surface densities of the bound charges.

' 3.82. A round dielectric disc of radius R and thickness d is stat-
ically polarized so that it gains the uniform polarization P, with
the vector P lying in the plane of the disc. Find the strengtil E of
the electric field at the centre of the disc if d € R.

3.83. Under certain conditions the polarization of an infinite
unqharged dielectric plate takes the form P = P, (1 — z*/d?), where
P, is a vector perpendicular to the plate, z is the distance from the
middle of the plate, d is its half-thickness. Find the strength E
of the electric field inside the plate and
the potential difference between its sur-

faces. 7

3.84. Initially the space between the 2 AR,
plates of the capacitor is filled with air,
and the field strength in the gap is equal Fig. 3.12.

to .EO‘ Then half the gap is filled with

u{uform isotropic dielectric with permittivity ¢ as shown in Fig. 3.12
Find the moduli of the vectors E and D in both parts of the ga[;
(I and 2) if the introduction of the dielectric
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(a) does not change the voltage across the plates;

(b) leaves the charges at the plates constant.

3.85. Solve the foregoing problem for the case when half the gap
is filled with the dielectric in the way shown in Fig. 3.13.

Fig. 3.13. : Fig. 3.14.

3.86. Half the space between two concentric electrodes of a spher-
ical capacitor is filled, as shown in Fig. 3.14, with uniform isotropic
dielectric with permittivity &. The charge of the capacitor is g.
Find the magnitude of the electric field strength between the elec-
trodes as a function of distance r from the curvature centre of the
electrodes.

3.87. Two small identical balls carrying the charges of the same
sign are suspended from the same point by insulating threads of
equal length. When the surrounding space was filled with kerosene
the divergence angle between the threads remained constant. What
is the density of the material of which the balls are made?

3.88. A uniform electric field of strength £ = 100 V/m is gener-
ated inside a ball made of uniform isotropic dielectric with permit-
tivity € = 5.00. The radius of the ball is R = 3.0 cm. Find the
maximum surface density of the bound charges and the total bound
charge of one sign.

3.89. A point charge g is located in vacuum at a distance ! from
the plane surface of a uniform isotropic dielectric filling up all the
half-space. The permittivity of the dielectric equals €. Find:

(a) the surface density of the bound charges as a function of distance
r from the point charge g; analyse the obtained result at I —0;

(b) the total bound charge on the surface of the dielectric.

3.90. Making use of the formulation and the solution of the fore-
going problem, find the magnitude of the force exerted by the charges
bound on the surface of the dielectric on the point charge g.

3.91. A point charge g is located on the plane dividing vacuum
and infinite uniform isotropic dielectric with permittivity e. Find
the moduli of the vectors D and E as well as the potential ¢ as func-
tions of distance r from the charge gq.

3.92. A small conducting ball carrying a charge g is located in
a uniform isotropic dielectric with permittivity & at a distance !
from an infinite boundary plane between the dielectric and vacuum.
Find the surface density of the bound charges on the boundary plane
as a function of distance r from the ball. Analyse the obtained result
for I — 0.
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3.93. A half-space filled with uniform isotropic dielectric with
permittivity & has the conducting boundary plane. Inside the dielec-
tric, at a distance ! from this plane, there is a small metal ball pos-
sessing a charge g. Find the surface density of the bound charges at
the boundary plane as a function of distance r from the ball.

3.94. A plate of thickness 2 made of uniform statically polarized
dielectric is placed inside a capacitor whose parallel plates are inter-
connected by a conductor. The polarization of the dielectric is equal

(w7 |«

Fig. 3.15.

to P (Fig. 3.15). The separation between the capacitor plates is d.
Find the strength and induction vectors for the electric field both
inside and outside the plates.

3.95. A long round dielectric cylinder is polarized so that the
vector P = ar, where o is a positive constant and r is the distance
from the axis. Find the space density p’ of bound charges as a function
of distance r from the axis.

3.96. A dielectric ball is polarized uniformly and statically. Its
polarization equals P. Taking into account that a ball polarized in
this way may be represented as a result of a small shift of all positive
charges of the dielectric relative to all negative charges,

(a) find the electric field strength E inside the ball;

(b) demonstrate that the field outside the ball is that of a dipole
located at the centre of the ball, the potential of that field being
equal to @ = por/4ne,, where p, is the electric moment of the ball,
and r is the distance from its centre.

3.97. Utilizing the solution of the foregoing problem, find the elec-
tric field strength E; in a spherical cavity in an infinite statically polariz-
ed uniform dielectric if the dielectric’s polarization is P, and far from
the cavity the field strength is E.

3.98. A uniform dielectric ball is placed in a uniform electric

field of strength E,. Under these conditions the dielectric becomes
polarized uniformly. Find the electric field strength E inside the ball
and the polarization P of the dielectric whose permittivity equals €.
Make use of the result obtained in Problem 3.96.
,3.99. An infinitely long round dielectric cylinder is polarized
uniformly and statically, the polarization P being perpendicular
to the axis of the cylinder. Find the electric field strength E inside the
dielectric.

3.100. A long round cylinder made of uniform dielectric is placed
in a uniform electric field of strength E,. The axis of the
cylinder is perpendicular to vector E,. Under these conditions
the dielectric becomes polarized uniformly. Making use of the result
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obtained in the foregoing problem, find the electric field strength
E in the cylinder and the polarization P of the dielectric whose per-
mittivity is equal to e.

3.3. ELECTRIC CAPACITANCE.
ENERGY OF AN ELECTRIC FIELD

e Capacitance of a parallel-plate capacitor:

C = gg,S/d. (3.3a)
e Interaction energy of a system of point charges:
1

W=-3 > aes (3.3b)
e Total electric energy of a system with continuous charge distribution:
W:% S @p dv. (3.3¢)

e Total elettric energy of two charged bodies 1 and 2:
W=W,4W,+Wy,, (3.3d)

where Wy and W, are the seli-energies of the bodies, and W,, is the interaction
energy,

e Energy of a charged capacitor:

=2 T T (3-3¢)
e Volume density of electric field energy:
_ED _ egE?

3.101. Find the capacitance of an isolated ball-shaped conductor
of radius R, surrounded by an adjacent concentric layer of dielectric
with permittivity e and outside radius R,,

3.102. Two parallel-plate air capacitors, each of capacitance C,
were connected in series to a battery with emf €. Then one of the
capacitors was filled up with uniform dielectric with permittivity e.
How many times did the electric field strength in that capacitor
decrease? What amount of charge flows through the battery?

3.103. The space between the plates of a parallel-plate capacitor
is filled consecutively with two dielectric layers I and 2 having
the thicknesses d, and d, and the permittivities €, and &, respectively.
The area of each plate is equal to S. Find:

(a) the capacitance of the capacitor;

(b) the density ¢’ of the bound charges on the boundary plane if
the voltage across the capacitor equals ¥V and the electric field is
directed from layer I to layer 2.

3.104. The gap between the plates of a parallel-plate capacitor
is filled with isotropic dielectric whose permittivity e varies linearly
from e, to e, (8, > ¢,) in the direction perpendicular to the plates.
The area of each plate equals S, the separation between the plates
is equal to d. Find:

(a) the capacitance of the capacitor;
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(b) the space density of the bound charges as a function of €
if the charge of the capacitor is g and the field E in it is directed toward
the growing & values.

3.105. Find the capacitance of a spherical capacitor whose elec-
trodes have radii R, and R, > R, and which is filled with isotropic
dielectric whose permittivity varies as € = a/r, where a is a constant,
and r is the distance from the centre of the capacitor.

3.106. A cylindrical capacitor is filled with two cylindrical layers
of dielectric with permittivities ¢, and &,. The inside radii pf -the
layers are equal to R; and R, > R,. The maximum permissible
values of electric field strength are equal to E,, and E,,, for these
dielectrics. At what relationship between &, R, and E, will the
voltage increase result in the field strength reaching the breakdown
value for both dielectrics simultaneously?

3.107. There is a double-layer cylindrical capacitor whose para-
meters areshown in Fig. 3.16. The breakdown field strength values
for these dielectrics are equal to £, and E, re-
spectively. What is the breakdown voltage of
this capacitor if e R E\<C e,RE,?

3.108. Two long straight wires with equal
cross-sectional radii a are located parallel to each
other in air. The distance between their axes
equals b. Find the mutual capacitance of the
wires per unit length under the condition b > a.

3.109. A long straight wire is located parallel to
an infinite conducting plate. The wire cross-sec-
tional radius is equal to a, the distance between
the axis of the wire and the plane equals b. Find the mutual ca-
pacitance of this system per unit length of the wire under the condi-
tion a < b.

3.110. Find the capacitance of a system of two identical metal
balls of radius a if the distance between their centres is equal to b,
with b > a. The system is located in a uniform dielectric with
permittivity e.

3.111. Determine the capacitance of a system consisting of a metal
ball of radius ¢ and an infinite conducting plane separated from the
centre of the ball by the distance ! if I > a.

3.112. Find the capacitance of a system of identical capacitors
between points A and B shown in

(a) Fig. 3.17a; (b) Fig. 3.175.

Fig. 3.16.
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3.113. Four identical metal plates are located in air at equal
distances d from one another. The area of each plate is equal to S.
Find the capacitance of the system between points A and B if the
plates are interconnected as shown

(a) in Fig. 3.18a; (b) in Fig. 3.18b.

A8 {/______995

(@) (6)

Fig. 3.18.

3.114. A capacitor of capacitance C, = 1.0 pF withstands the
maximum voltage V, = 6.0 kV while a capacitor of capacitance
C, = 2.0 pF, the maximum voltage V, = 4.0 kV. What voltage
will the system of these two capacitors withstand if they are con-
nected in series?

3.115. Find the potential difference between points A4 and B
of the system shown in Fig. 3.19 if the emf is equal to & = 110V
and the capacitance ratio Co/C, = n = 2.0.

Fig. 3.19.

3.116. Find the capacitance of an infinite circuit formed by the
repetition of the same link consisting of two identical capacitors,
each with capacitance C (Fig. 3.20).

.0 C
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Fig. 3.20. Fig. 3.21.

3.117. A circuit has a section AB shown in Fig. 3.21. The emf
of the source equals & = 10 V, the capacitor capacitances are equal
to C; = 1.0 uF and Cy, = 2.0 pF, and the potential difference ¢, —
— ¢ = 5.0 V. Find the voltage across each capacitor.

3.118. In a circuit shown in Fig. 3.22 find the potential difference
between the left and right plates of each capacitor.
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3.119. Find the charge of each capacitor in the circuit shown in
Fig. 3.22.

G A ;
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Fig. 3.22. Fig. 3.23.

3.120. Determine the potential difference ¢, — ¢ 5 between points
A and B of the circuit shown in Fig. 3.23. Under what condition is
it equal to zero?

3.121. A capacitor of capacitance C, = 1.0 uF charged up to
a voltage ¥V = 110 V is connected in parallel to the terminals
of a circuit consisting of two uncharged capacitors connected in
series and possessing the capacitances C, = 2.0 uF and Cy = 3.0 uk.
What charge will flow through the connecting wires? _

3.122. What charges will flow after the shorting of the switch
Sw in the circuit illustrated in Fig. 3.24 through sections I and 2
in the directions indicated by the arrows?

Sw. S Gy
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& T T
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Fig. 3.24.

Fig. 3.25.

3.123. In the circuit shown in Fig. 3.25 the emf of each battery
is equal to & = 60 V, and the capacitor capacitances are equal
to C;, = 2.0 uF and C, = 3.0 pF. Find the charges which will
flow after the shorting of the switch Sw through sections 1, 2 and 3
in the directions indicated by the arrows.

3.124. Find the potential difference ¢, — ¢p between points
A and B of the circuit shown in Fig. 3.26.

5,' : b
EU/ ’4] (2 E}—*Z*——I 0 a
{3
o G

& 8 &,

Fig. 3.26. Fig. 3.27.

3.125. Determine the potential at point 7 of the circuit shown in
Fig. 3.27, assuming the potential at the point O to be equal to zero.
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Using the symmetry of the formula obtained, write the expressions
for the potentials. at points 2 and 3.

3.126. Find the capacitance of the circuit shown in Fig. 3.28
between points 4 and B.

G 4]

)__li

G G

Fig. 3.28.

3.127. Determine the interaction energy of the point charges lo-
cated at the corners of a square with the side @ in the circuits shown
in Fig. 3.29.

+g T———-—Q+g +g T————T—q +g T————T+q
I l i ! | !
I ' 1 ! | )

&by pb———biy b
+q g -q +J g g
(@) (5) (c)

Fig. 3.29.

3.128. There is an infinite straight chain of alternating charges
g and --g. The distance between the neighbouring chargesis equal
to a. Find the interaction energy of each charge with all the
others.

Instruetion. Make use of the expansion of In (1 4+ «) in a power
geries in a.

3.129. A point charge g is located at a distance ! from an infinite
tonducting plane. Find the interaction energy of that charge with
chose induced on the plane.

3.130. Calculate the interaction energy of two balls whose charges
g, and g, are spherically symmetrical. The distance between the
centres of the balls is equal to I

Instruetion. Start with finding the interaction energy of a ball and
a thin spherical layer.

3.131. A capacitor of capacitance C; = 1.0 uF carrying initially
a voltage V = 300 V is connected in parallel with an uncharged
capacitor of capacitance C, = 2.0 pF. Find the increment of the
electric energy of this system by the moment equilibrium is reached.
Explain the result obtained.
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3.132. What amount of heat will be generated in the circuit shown
in Fig. 3.30 after the switch Sw isshifted from position I to position 2?

Sw
A :
7 2
L
& & &;
Fig. 3.30. Fig. 3.31.

3.133. What amount of heat will be generated in the circuit shown
in Fig. 3.31 after the switch Sw is shifted from position I to posi-
tion 2?

3.134. A system consists of two thin concentric metal shells of
radii R; and R, with corresponding charges ¢; and ¢,. Find the self-
energy values W, and W, of each shell, the interaction energy of
the shells W,,, and the total electric energy of the system.

3.135. A charge ¢ is distributed uniformly over the volume of
a ball of radius R. Assuming the permittivity to be equal to unity,
find:

{a) the electrostatic self-energy of the ball;

{b) the ratio of the energy W, stored in the ball to the energy
W, pervading the surrounding space.

3.136. A point charge ¢ = 3.0 pC is located at the centre of a spher-
ical layer of uniform isotropic dielectric with permittivity ¢ = 3.0.
The inside radius of the layer is equal to a = 250 mm, the outside
radius is b = 500 mm. Find the electrostatic energy inside the
dielectric layer.

3.137. A spherical shell of radius R, with uniform charge ¢ is
expanded to a radius R,. Find the work performed by the electric
forces in this process.

3.138. A spherical shell of radius R, with a uniform charge ¢ has
a point charge g, at its centre. Find the work performed by the elec-
tric forces during the shell expansion from
radius R, to radius R,.

3.139. A spherical shell is uniformly
charged with the surface density 0. Using the
energy conservation law, find the magnitude
of the electric force acting on a unit area of
the shell.

3.140. A point charge ¢ is located at the
centre O of a spherical uncharged conducting
layer provided with a small orifice (Fig. 3.32). The inside and outside
radii of the layer are equal to a and b respectively. What amount of
work has to be performed to slowly transfer the charge g from the
point O through the orifice and into infinity?

Fig. 3.32.
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3.141. Each plate of a parallel-plate air capacitor has an area S.
What amount of work has to be performed to slowly increase the
distance between the plates from =z, to z, if

(a) the capacitance of the capacitor, which is equal to g, or (b) the
voltage across the capacitor, which is equal to V, is kept constant
in the process?

3.142. Inside a parallel-plate capacitor there is a plate parallel
to the outer plates, whose thickness is equal to = 0.60 of the gap
width. When the plate is absent the capacitor capacitance equals
¢ = 20 nF. First, the capacitor was connected in parallel to a cons-
tant voltage source producing V = 200 V, then it was disconnected
from it, after which the plate was slowly removed from the gap.
Find the work performed during the removal, if the plate is

(a) made of metal; (b) made of glass.

3.143. A parallel-plate capacitor was lowered into water in a hor-
izontal position, with water filling up the gap between the plates
d = 1.0 mm wide. Then a constant voltage V = 500 V was applied
to the capacitor. Find the water pressure increment in the

ap.

13).144. A parallel-plate capacitor is located horizontally so that
one of its plates is submerged into liquid while the other is over its
surface (Fig. 3.33). The permittivity of the liquid is equal to ¢,
its density is equal to p. To what height will the level of the liquid
in the capacitor rise after its plates get a charge of surface density o?

WV'

Fig. 3.34.

3.145. A cylindrical layer of dielectric with permittivity & is
inserted into a cylindrical capacitor to fill up all the space between
the electrodes. The mean radius of the electrodes equals R, the gap
between them is equal to d, with d < R. The constant voltage V¥
is applied across the electrodes of the capacitor. Find the magnitude
of the electric force pulling the dielectric into the capacitor.

3.146. A capacitor consists of two stationary plates shaped as
a semi-circle of radius R and a movable plate made of dielectric
with permittivity ¢ and capable of rotating about an axis O between
the stationary plates (Fig. 3.34). The thickness of the movable plate
is equal to d which is practically the separation between the station-
ary plates. A potential difference V is applied to the capacitor.
Find the magnitude of the moment of forces relative to the axis O
acting on the movable plate in the position shown in the
figure.

124

3.4. ELECTRIC CURRENT
e Ohm’'s law for an inhomogeneous segment of a circuit:
14 — [
R q’l_i'}_“*‘__w , (3.42)
where V;, is the voltage drop across the segment.
o Differential form of Ohm’s law:

j=90(E+ E¥), (3.4b)
where E* is the strength of a field produced by extraneous forces.
e Kirchhoff’s laws (for an electric circuit):

N =0, DRy = Y ;. (3.4¢)
e Power P of current and thermal power Q:
P=VI=(p1—p+81) [, Q=RI™. (3.44)
o Specific power P,y of current and specific thermal power Q,p:
P&pzj (E+-E*), Qsp =pj2 (3.4e)
s Current density in a metal:
j == enu, (3.4f)

where u is the average velocity of carriers.
o Number of ions recombining per unit volume of gas per unit time:

ny=rnt, (3.4g)
where r is the recombination coefficient.

3.147. A long cylinder with uniformly charged surface and cross-
sectional radius a = 1.0 ¢cm moves with a constant velocity v =
= 10 m/s along its axis. An electric field strength at the surface
of the cylinder is equal to £ = 0.9 kV/cm. Find the resulting convec-
tion current, that is, the current caused by mechanical transfer of
a charge.

3.148. An air cylindrical capacitor with a dc voltage V = 200 V
applied across it is being submerged vertically into a vessel filled
with water at a velocity v = 5.0 mm/s. The electrodes of the capacitor
are separated by a distance d = 2.0 mm, the mean curvature radius
of the electrodes is equal to r = 50 mm. Find the current flowing
in this case along lead wires, if d < r. 6 7

3.149. At the temperature 0 °C the electric
resistance of conductor 2 is n times that of 2
conductor I. Their temperature coefficients of J
resistance are equal to o, and o, respectively.
Find the temperature coefficient of resistance 5
of a circuit segment consisting of these two 8
conductors when they are connected 7 4

(a) in series; (b) in parallel. Fig. 3.35.

3.150. Find the resistance of a wire frame
shaped as a cube (Fig. 3.35) when measured between points

(a) I-7; (b) 1-2; (c) I1-3.

The resistance of each edge of the frame is R
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3.151. At what value of the resistance R, in the circuit shown
in Fig. 3.36 will the total resistance between points 4 and B be
independent of the number of cells?

' 2R ZR 2R Vi
A _—
Iﬁ I l/? I iﬁ’ l R Jﬁr
Bo —_——

Fig. 3.36.

3.152. Fig. 3.37 shows an infinite circuit formed by the repetition
of the same link, consisting of resistance R, = 4.0Q and R, = 3.0 Q.
Find the resistance of this cirecuit between points A and B.

Fig. 3.37.

3.153. There is an infinite wire grid with square cells (Fig. 3.38).
The resistance of each wire between neighbouring joint connections
is equal to R,. Find the resistance R of the
whole grid between points A and B.

Instruction. Make use of principles of
symmetry and superposition.

3.154. A homogeneous poorly conducting 14 18
medium of resistivity p fills up the space r‘—J
between two thin coaxial ideally conduct-
ing cylinders. The radii of the cylinders
are equal to a and b, with a <'b, the length
of each cylinder is I. Neglecting the edge
effects, find the resistance of the medium Fig. 3.38.
between the cylinders. .

3.155. A metal ball of radius a is surrounded by a thin concentric
metal shell of radius b. The space between these electrodes is filled
up with a poorly conducting homogeneous medium of resistivity p.
Find the resistance of the interelectrode gap. Analyse the obtained
solution at b — oo.

3.156. The space between two conducting concentric spheres of
radii @ and b (@ << b) is filled up with homogeneous poorly conducting
medium. The capacitance of such a system equals C. Find the resistiv-
ity of the medium if the potential difference between the spheres,
when they are disconnected from an external voltage, decreases
n-fold during the time interval At.

oo

3.157. Two metal balls of the same radius a are located in a homo-
geneous poorly conducting medium with resistivity p. Find the
resistance of the medium between the balls provided that the separa-
tion between them is much greater than the radius of the ball.

3.158. A metal ball of radius a is located at a distance [ from an
infinite ideally conducting plane. The space around the ball is filled
with a homogeneous poorly conducting medium with resistivity p.
In the case of a <! find:

(a) the current density at the conducting plane as a function of
distance r from the ball if the potential difference between the ball
and the plane is equal to ¥V;

(b) the electric resistance of the medium between the ball and
the plane.

3.159. Two long parallel wires are located in a poorly conducting
medium with resistivity p. The distance between the axes of the
wires is equal to I, the cross-section radius of each wire equals a.
In the case a <! find:

(a) the current density at the point equally removed from the axes
of the wires by a distance r if the potential difference between the
wires is equal to V;

(b) the electric resistance of the medium per unit length of the
wires.

3.160. The gap between the plates of a parallel-plate capacitor
is filled with glass of resistivily p = 100 GQ-m. The capacitance
of the capacitor equals C = 4.0 nF. Find the leakage current of the
capacitor when a voltage V = 2.0 kV is applied to it.

3.161. Two conductors of arbitrary shape are embedded into an
infinite homogeneous poorly conducting medium with resistivity
o and permittivity . Find the value of a product RG for this system,
where R is the resistance of the medium between the conductors,
and C is the mutual capacitance of the wires in the presence of the
medinm.

3.162. A conductor with resistivity p bounds on a dielectric with
permittivity e. At a certain point 4 at the conductor’s surface the
electric displacement equals D, the vector D being directed away
from the conductor and forming an angle « with the normal of the
surface. Find the surface density of charges on the conductor at the
point 4 and the current density in the conductor in the vicinity of
the same point.

3.163. The gap between the plates of a parallel-plate capacitor
is filled up with an inhomogeneous poorly conducting medium whose
conductivity varies linearly in the direction perpendicular to the
plates from o, = 1.0 pS/m to o, = 2.0 pS/m. Each plate has an
area S = 230 cm?, and the separation between the plates is d =
= 2.0 mm. Find the current flowing through the capacitor due to
a voltage V = 300 V.

3.164. Demonstrate that the law of refraction of direct current
lines at the boundary between two conducting media has the form
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tan o,/tan a; = 0,/0,, where o, and o, are the conductivities of
the media, a, and o, are the angles between the current lines and the
normal of the boundary surface.

3.165. Two cylindrical conductors with equal cross-sections and
different resistivities p, and p, are put end to end. Find the charge
at the boundary of the conductors if a current I flows from conductor
1 to conductor 2.

3.166. The gap between the plates of a parallel-plate capacitor is
filled up with two dielectric layers 7 and 2 with thicknesses d, and
dy, permittivities e, and e,, and resistivities p, and p,. A dc voltage
V is applied to the capacitor, with electric field directed from layer 7
to layer 2. Find o, the surface density of extraneous charges at the
boundary between the dielectric layers, and the condition under
which ¢ = 0.

3.167. An inhomogeneous poorly conducting medium fills up
the space between plates 7 and 2 of a parallel-plate capacitor. Its
permittivity and resistivity vary from values &;, p, at plate 7 to
values e,, p, at plate 2. A dc voltage is applied to the capacitor
through which a steady current I flows from plate 7 to plate 2. Find
the total extraneous charge in the given medium.

3.168. The space between the plates of a parallel-plate capacitor
is filled up with inhomogeneous poorly conducting medium whose
resistivity varies linearly in the direction perpendicular to the plates.
The ratio of the maximum value of resistivity to the minimum
one is equal to 1 The gap width equals d. Find the volume density
of the charge in the gap if a voltage V is applied to the capacitor.
¢ is assumed to be leverywhere.

3.169. A long round conductor ot cross-sectional area § is made
of material whose resistivity depends only on a distance r from the
axis of the conductor as p = a/r?, where a is a constant. Find:

(a) the resistance per unit length of such a conductor;

(b) the electric field strength in the conductor due to which a cur-
rent I flows through it.

3.170. A capacitor with capacitance C = 400 pF is connected
via a resistance R = 650 Q to a source of constant voltage V,.
How soon will the voltage developed across the capacitor reach a
value V = 0.90 V,? ‘

3.171. A capacitor filled with dielectric of permittivity e = 2.1
loses half the charge acquired during a time interval © = 3.0 min.
Assuming the charge to leak only through the dielectric filler, cal-
culate its resistivity.

3.172. A circuit consists of a source of a constant emf € and a resist
ance R and a capacitor with capacitance C connected in series. The
internal resistance of the source is negligible. At a moment ¢ = 0
the capacitance of the capacitor is abruptly decreased v-fold. Find
the current flowing through the circuit as a function of time £.

3.173. An ammeter and a voltmeter are connected in series to a bat-
tery with an emf € = 6.0 V. When a certain resistance is connected
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in parallel with the voltmeter, the readings of the lat.ter decrease
n = 2.0 times, whereas the readings of the ammeter increase the
same number of times. Find the voltmeter readings after the con-
nection of the resistance.

3.174. Find a potential difference ¢, — ¢, between points 7 and 2
of the circuit shown in Fig. 3.39 if R =10 Q, R, =20 Q, &, =
= 5.0V, and &, = 2.0 V. The internal resist-
ances of the current sources are negligible. R, &

3.175. Two sources of current of equal emf
are connected in series and have different ; 2
internal resistances R; and R, (R, > R,).

Find the external resistance R at which the & Rz
potential difference across the terminals of one )

of the sources (which one in particular?) be- Fig. 3.30.
comes equal to zero.

3.176. N sources of current with different emf’'s are connected
as shown in Fig. 3.40. The emf’s of the sources are proportional to

s
N

ﬁ‘\/\{/\] o

Fig. 3.40. Fig. 3.41.

their internal resistances, i.e. € = aR, where o is an assigned con-
stant. The lead wire resistance is negligible. Find:

(a) the current in the circuit;

(b) the potential difference between points A4 and B dividing
the circuit in n and N — n links.

3.177. In the circuit shown in Fig. 3.41 the sources have emf’s
€, =10 V and &, = 2.5 V and the resistances have the values
R, =10 Q and R, = 20 Q. The internal resistances of the sources
are negligible. Find a potential difference ¢, — @5 between the
plates 4 and B of the capacitor C.

3.178. In the circuit shown in Fig. 3.42 the emf of the source is
equal to & = 5.0 V and the resistances are equal to R, = 4.0 Q
and R, = 6.0 Q. The internal resistance of the source equals R =
== 0.10 Q. Find the currents flowing through the resistances R,
and R,.

3.179. Fig. 3.43 illustrates a potentiometric circuit by means of
which we can vary a voltage V applied to a certain device possessing
a resistance R. The potentiometer has a length ! and a resistance
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R,, and voltage V, is applied to its terminals. Find the voltage V
fed to the device as a function of distance x. Analyse separately the
case R > R,.

ol o
lif)

T —»

R

Fig. 3.42. Fig. 3.43.

3.180. Find the emf and the internal resistance of a source which
is equivalent to two batteries connected in parallel whose emf’s
are equal to &, and &, and internal resistances to R, and R,.

3.181. Find the magnitude and direction of the current flowing
through the resistance R in the circuit shown in Fig. 3.44 if the

A
&
Fy iéz— 1 Rz 55
! K, R
ﬂf 7y 3
—
6] 7 52
— 3 g
Fig. 3.44. Fig.3.45.

emf’s of the sources are equal to &, = 1.5 V and &€, = 3.7 V and
the resistances are equal to R, = 10 Q, R, =20 Q, R = 5.0 Q.
The internal resistances of the sources are negligible.

3.182. In the circuit shown in Fig. 3.45 the sources have emf’s
g€, =15V, & =20V, € =25V, and the resistances are
equal to R, = 10Q, R, = 20Q, R, = 30€Q. The internal resistances
of the sources are negligible. Find:

(a) the current flowing through the
resistance R;;

(b) a potential difference ¢, — ¢p
between the points 4 and B.

3.183. Find the current flowing through
the resistance R in the circuit shown in .
Fig. 3.46. The internal resistances of the Fig. 3.46.
batteries are negligible.

3.184. Find a potential difference ¢, — ¢ p between the plates
of a capacitor C in the circuit shown in Fig. 3.47 if the sources have
emf’'s & = 4.0 V and &, = 1.0 V and the resistances are equal
to By =10Q, R, = 20Q, and R, = 30 Q. The internal resistances
of the sources are negligible.
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3.185. Find the current flowing through the resistance A, of the
circuit shown in Fig. 3.48 if the resistances are equal to Ry = 10 Q,
R, = 20 Q, and R, = 30 Q, and the potentials of points 7, 2, and 3
are equal to ¢, =10 V, ¢, =6 V, and @3 =5V

As n
Al'g
62 —_
RZ Ry
]}
L
|
Fig. 3.47. Fig. 3.48.

3.186. A constant voltage V = 25 V is maintained between
points A and B of the circuit (Fig. 3.49). Find the magnitude and

/¢ R
A 8
Rs Ry
/i
Fig. 3.49. Fig. 3.50.

direction of the current lowing through the segment CD if the resist-
ances are equal to R, =1.0Q, R, =2.0Q, R; =3.0Q, and R, =
= 4.0 Q.

3.187. Find the resistance between points 4 and B of the circuit
shown in Fig. 3.50.

3.188. Find how the voltage across the capacitor C varies with
time ¢t (Fig. 3.51) after the shorting of the switch Sw at the moment
t=0.

o

Fig. 3.51. Fig. 3.52.

3.189. What amount of heat will be generated in a coil of resist-
ance R due to a charge ¢ passing through it if the current in the coil
(a) decreases down to zero uniformly during a time interval At;
(b) decreases down to zero halving its value every At seconds?
3.190. A dc source with internal resistance R, is loaded with
three identical resistances R interconnected as shown in Fig. 3.52.
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At what value of R will the thermal power generated in this circuit
be the highest?

3.191. Make sure that the current distribution over two resistances
R, and R, connected in parallel corresponds to the minimum thermal
power generated in this circuit.

3.192. A storage battery with emf &€ = 2.6 V loaded with an
external resistance produces a current I = 1.0 A. In this case the
potential difference between the terminals of the storage battery
equals V = 2.0 V. Find the thermal power generated in the battery
and the power developed in it by electric iorces.

3.193. A voltage V is applied to a dc electric motor. The armature
winding resistance is equal to R. At what value of current flowing
through the winding will the useful power of the motor be the highest?
What is it equal to? What is the motor efficiency in this case?

3.194. How much (in per cent) has a filament diameter decreased
due to evaporation if the maintenance of the previous temperature
required an increase of the voltage by m = 1.0%? The amount of
heat transferred from the filament into surrounding space is assumed
to be proportional to the filament surface area.

3.195. A conductor has a temperature-independent resistance R
and a total heat capacity C. At the moment ¢ = 0 it is connected
to a dc voltage V. Find the time dependence of a conductor’s tempe-
rature 7 assuming the thermal power dissipated into surrounding
space to vary as ¢ = k (I — T,), where k is a constant, T, is the
environmental temperature (equal to the conductor’s temperature
at the initial moment).

3.196. A circuit shown in Fig. 3.53 has resistances R; = 20Q
and R, = 30 Q. At what value of the resistance R, will the thermal

& 5,

2 A2

Fig. 3.53. Fig. 3.54.

power generated in it be practically independent of small variations
of that resistance? The voltage between the points A and B is sup-
posed to be constant in this case.

3.197. In a circuit shown in Fig. 3.54 resistances R, and R,
are known, as well as emf’s &€, and &,. The internal resistances
of the sources are negligible. At what value of the resistance R
will the thermal power generated in it be the highest? What is it
equal to?

3.198. A series-parallel combination battery consisting of a large
number V = 300 of identical cells, each with an internal resistance
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r = 0.3 Q, is loaded with an external resistance R = 10 ©. Find
the number n of parallel groups consisting of an equal number of
cells connected in series, at which the external resistance generates
the highest thermal power.

3.199. A capacitor of capacitance C = 5.00 uF is connected to
a source of constant emf & = 200 V (Fig. 3.55). Then the switch
Sw was thrown over from contact I to contact 2. Find the amount
of heat generated in a resistance R, = 500 Q if R, = 330 Q.

3.200. Between the plates of a parallel-plate capacitor there is

Fig. 3.55. Fig. 3.56.

gap. When that plate is absent the capacitor has a capacity C =
= 20 nF. The capacitor is connected to a de voltage source V =
= 100 V. The metallic plate is slowly extracted from the gap. Find:

(a) the energy increment of the capacitor;

(b) the mechanical work performed in the process of plate extrac-
tion.

3.201. A glass plate totally fills up the gap between the electrodes
of a parallel-plate capacitor whose capacitance in the absence of
that glass plate is equal to C = 20 nF. The capacitor is connected
to a dc voltage source ¥V = 100 V. The plate is slowly, and without
friction, extracted from the gap. Find the capacitor energy increment
and the mechanical work performed in the process of plate extrac-
tion.

3.202. A cylindrical capacitor connected to a dc voltagesource V
touches the surface of water with its end (Fig. 3.56). The separation
d between the capacitor electrodes is substantially less than their
mean radius. Find a height & to which the water level in the gap
will rise. The capillary effects are to be neglected.

3.203. The radii of spherical capacitor electrodes are equal to
a and b, with a << b. The interelectrode space is filled with homoge-
neous substance of permittivity € and resistivity p. Initially the
capacitor is not charged. At the moment ¢ = O the internal electrode
gets a charge ¢,. Find:

(a) the time variation of the charge on the internal electrode;

(b) the amount of heat generated during the spreading of the
charge.
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3.204. The electrodes of a capacitor of capacitance C = 2.00 uF
carry opposite charges g, = 1.00 mC. Then the electrodes are inter-
connected through a resistance R = 5.0 MQ. Find:

(a) the charge flowing through that resistance during a time inter-
val © = 2.00 s;

(b) the amount of heat generated in the resistance during the
same interval.

3.205. In a circuit shown in Fig. 3.57 the capacitance of each
capacitor is equal to C and the resistance, to R. One of the capacitors
was connected to a voltage V, and then at the
moment ¢ — 0 was shorted by means of the switch R
Sw. Find:

(a) a current J in the circuit as a function of ¢ I
time ¢; [_/o__:'—

(b) the amount of generated heat provided a Sw
dependence I (¢) is known.

3.206. A coil of radius r = 25 cm wound of a thin
copper wire of length I = 500 m rotates with an
angular velocity @ = 300 rad/s about its axis. The coil is connect-
ed to a ballistic galvanometer by means of sliding contacts. The
total resistance of the circuit is equal to R = 21 Q. Find the specific
charge of current carriers in copper if a sudden stoppage of the
coil makes a charge ¢ = 10 nC flow through the galvano-
meter.

3.207. Find the total momentum of electrons in a straight wire
of length ! = 1000 m carrying a current I =170 A.

3.208. A copper wire carries a current of density j = 1.0 A/mm?.
Assuming that one free electron corresponds to each copper atom,
evaluate the distance which will be covered by an electron during
its displacement ! = 10 mm along the wire.

3.209. A straight copper wire of length [ = 1000 m and cross-
sectional area S — 1.0 mm? carries a current I = 4.5 A. Assuming
that one free electron corresponds to each copper atom, find:

(a) the time it takes an electron to displace from one end of the
wire to the other;

(b) the sum of electric forces acting on all free electrons in the
given wire. ‘

3.210. A homogeneous proton beam accelerated by a potential
difference ¥ — 600 kV has a round cross-section of radius r =
— 5.0 mm. Find the electric field strength on the surface of the beam
and the potential difference between the surface and the axis of
the beam if the beam current is equal to I = 50 mA.

3.211. Two large parallel plates are located in vacuum. One of
them serves as a cathode, a source of electrons whose initial velocity
is negligible. An electron flow directed toward the opposite plate prod-
uces a space charge causing the potential in the gap between the
plates to vary as ¢ = az?, where a is a positive constant, and z is
the distance from the cathode. Find:

Fig. 3.57.
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f(a) the volume density of the space charge as a function
of z;

(b) the current density.

3.212. The air between two parallel plates separated by a distance
d = 20 mm is ionized by X-ray radiation. Each plate has an area
S = 500 cm?. Find the concentration of positive ions if at a voltage
V = 100 V a current I = 3.0 pA flows between the plates, which
is well below the saturation current. The air ion mobilities are uj =
= 1.37 em?/(V-s) and uy = 1.91 cm?(V-s). ’

3.213. A gas is ionized in the immediate vicinity of the surface
of plane electrode 7 (Fig. 3.58) separated from electrode 2 by a dis-
tance [. An alternating voltage varying with time ¢t as V = V sin ot
is applied to the electrodes. On decreasing the
frequency @ it was observed that the galvano-
meter G indicates a current only at o << @, 7
where @, is a certain cut-off frequency. Find
the mobility of ions reaching electrode 2 under
these conditions.

3.214. The air between two closely located v
plates is uniformly ionized by ultraviolet radia-
tion. The air volume between the plates is equal
to V = 500 cm3, the observed saturation current
is equal to I, = 0.48 pA. Find:

“ (a) the number of ion pairs produced in a unit volume per unit
ime;

(b) the equilibrium concentration of ion pairs if the recombination
coefficient for air ions is equal to r = 1.67-107% cm?¥/s.

3.215. Having been operated long enough, the ionizer producing

r; = 3.5-10° cm~.57! of ion pairs per unit volume of air per unit
time was switched off. Assuming that the only process tending to
reduce the number of ions in air is their recombination with coeffic-
ient r = 1.67-10°% cm?®/s, find how soon after the ionizer’s switching
off the ion concentration decreases m = 2.0 times.

3.216. A parallel-plate air capacitor whose plates are separated
by a distance d = 5.0 mm is first charged to a potential difference
7V = 90 V and then disconnected from a dc voltage source. Find
the time interval during which the voltage across the capacitor de-
creases by 1 =1.0%, taking into account that the average number
of ion pairs formed in air under standard conditions per unit volume

per unit time is equal to n; = 5.0 cm~%-s~! and that the given volt-
age corresponds to the saturation current.

3.217. The gap between two plane plates of a capacitor equal to
d is filled with a gas. One of the plates emits v, electrons per second
which, moving in an electric field, ionize gas molecules; this way
each electron produces o new electrons (and ions) along a unit length
gf its path. Find the electronic current at the opposite plate, neglect-
ing the ionization of gas molecules by formed ions.

Fig. 3.58.
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3.218. The gas between the capacitor plates separated by a dist-

ance d is uniformly ionized by ultraviolet radiation so that n; elect-
rons per unit volume per second are formed. These electrons moving
in the electric field of the capacitor ionize gas molecules, each electron

producing o new electrons (and ions) per unit length of its path..

Neglecting the ionization by ions, find the electronic current den-
sity at the plate possessing a higher potential.

3.5. CONSTANT MAGNETIC FIELD.
MAGNETICS

e Magnetic field of a point charge ¢ moving with non-relativistic ve-
locity v:

_ o _glvr]
B= e (3.5a)
e Biot-Savart law:
_ b [ir] _po L1dl, 1]
aB=+L Llay, aB=2 ——. (3.5b)
e Circulation of a vector B and Gauss’s theorem for it:
@B dr = pol, §B ds = 0. (3.5¢)
e Lorentz force:
F = qE + g [vB]. (3.5d)
e Ampere force:
dF = [jB]l dV, dF = I [dl, Bl. (3.5e)

e Force and moment of forces acting on a magnetic dipole py, = ISm:
F=pm 'g—f , N={[pmBl (3.5f)

where oB/dn is the derivative of a vector B with respect to the dipole direction.
e Circulation of magnetization J:

@J dar = I, (3.5g)

where I’ is the total molecular current,
e Vector H and its circulation:

=2 _3 § Hdr=1, (3.5h)
Mo

where I is the algebraic sum of macroscopic currents. .
+ Relations at the boundary between two magnetics:

Byn=Ban, Hyg=Hyr. (3.51)
e For the case of magnetics in which J = yH:
B=opplH, p=1+1 (3.55)

3.219. A current / = 1.00 A circulates in a round thin-wire loop
of radius B = 100 mm. Find the magnetic induction
(a) at the centre of the loop;
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(b) at the point lying on the axis of the loop at a distance z =
= 100 mm {rom its centre.

3.220. A current I flows along a thin wire shaped as a regular
polygon with n sides which can be inscribed into a circle of radius R.
Find the magnetic induction at the centre of the polygon. Analyse
the obtained expression at n — oo.

3.221. Find the magnetic induction at the centre of a rectangular
wire frame whose diagonal is equal to d = 16 cm and the angle
between the diagonals is equal to ¢ = 30° the current flowing in
the frame equals 7 = 5.0 A.

3.222. A current I=>5.0 A flows along a thin wire shaped as shown
in Fig. 3.59. The radiusof a curved part of the wire is equal to R =
= 120 mm, the angle 29 = 90°. Find the magnetic induction of
the field at the point O.

I

X
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Fig. 3.59. Fig. 3.60.

3.223. Find the magnetic induction of the field at the point O
of a loop with current J, whose shape is illustrated

(a) in Fig. 3.60a, the radii a and b, as well as the angle ¢ are
known;

(b) in Fig. 3.60b, the radius a and the side b are known.

3.224. A current I flows along a lengthy thin-walled tube of radius
R with longitudinal slit of width k. Find the induction of the mag-
netic field inside the tube under the condition 2 < R.

3.225. A current / flows in a long straight wire with cross-section
having the form of a thin half-ring of radius R (Fig. 3.61). Find
the induction of the magnetic field at the point

0
R G
)
’ . C — o
N T
(@ (b) ©

Fig. 3.61. Fig. 3.62.

3.226. Find the magnetic induction of the field at the point O
if a current-carrying wire has the shape shown in Fig. 3.62 a, b, c.
The radius of the curved part of the wire is R, the linear parts are
assumed to be very long.
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3.227. A very long wire carrying a current I = 5.0 A is bent
at right angles. Find the magnetic induction at a point lying on a per-
pendicular to the wire, drawn through the point of bending, at
a distance I = 35 cm from it.

3.228. Find the magnetic induction at the point O if the wire car-
rying a current / = 8.0 A has the shape shown in Fig. 3.63 g, b, c.

Z Zh z

A 71\ 20\
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z £
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Fig. 3.63.

The radius of the curved part of the wire is # = 100 mm, the linear
parts of the wire are very long.

3.229. Find the magnitude and direction of the magnetic induction
vector B

(a) of an infinite plane carrying a current of linear density i;
the vector i is the same at all points of the plane;

(b) of two parallel infinite planes carrying currents of linear den-
sities i and —i; the vectors i and —i are constant at all points of
the corresponding planes.

3.230. A uniform current of density j flows inside an infinite
plate of thickness 2d parallel to its surface. Find the magnetic induc-
tion induced by this current as a function of
the distance z from the median plane of the
plate. The magnetic permeability is assumed
to be equal to unity both inside and outside
the plate.

3.231. A direct current I flows along a
lengthy straight wire. From the point O
(Fig. 3.64) the current spreads radially all ‘ 0
over an infinite conducting plane perpendicu- Fig. 3.64
lar to the wire. Find the magnetic induction 18 9.0%
at all points of space.

3.232. A current I flows along a round loop. Find the integral

S B dr along the axis of the loop within the range from —oo to -+oo.

Explain the result obtained.

3.233. A direct current of density j flows along a round uniform
straight wire with cross-section radius R. Find the magnetic induction
vector of this current at the point whose position relative to the axis
of the wire is defined by aradius vector r. The magnetic permeability
is assumed to be equal to unity throughout all the space.
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3.234. Inside a long straight uniform wire of round cross-section
there is a long round cylindrical cavity whose axis is parallel to
the axis of the wire and displaced from the latter by a distance 1.
A direct current of density j flows along the wire. Find the magnetic
induction inside the cavity. Consider, in particular, the case I = 0.

3.235. Find the current density as a function of distance r from
the axis of a radially symmetrical parallel stream of electrons if the
magnetic induction inside the stream varies as B = br*, where
b and o are positive constants.

3.236. A single-layer coil (solenoid) has length ! and cross-section
radius R, A number of turns per unit length is equal to n. Find the
magnetic induction at the centre of the coil when a current I flows
through it.

3.237. A very long straight solenoid has a cross-section radius
R and n turns per unit length. A direct current I flows through the
solenoid. Suppose that z is the distance from the end of the solenoid,
measured along its axis. Find:

(a) the magnetic induction B on the axis as a function of z; draw
an approximate plot of B vs the ratio z/R;

(b) the distance z, to the point on the axis at which the value of
B differs by n = 1% from that in the middle section of the sole-
noid.

3.238. A thin conducting strip of width A = 2.0 cm is tightly
wound in the shape of a very long coil with cross-section radius R =
= 2.5 cm to make a single-layer straight solenoid. A direct current
I = 5.0 A flows through the strip. Find the magnetic induction
inside and outside the solenoid as a function of the distance r from
its axis.

3.239. N = 2.5-10% wire turns are uniformly wound on a wooden
toroidal core of very small cross-section. A current I flows through
the wire. Find the ratio 1 of the magnetic induction inside the core
to that at the centre of the toroid.

3.240. A direct current = 10 A flows in a long straight round
conductor. Find the magnetic flux through a half of wire's cross-
section per one metre of its length.

3.241. A very long straight solenoid carries a current I. The
cross-sectional area of the solenoid is equal to S, the number of
turns per unit length is equal to n.
Find the flux of the vector B through
the end plane of the solenoid.

3.242. Fig. 3.65 shows a toroidal sol- / h
enoid whose cross-section is rectangular.

Find the magnetic flux through this
cross-section if the current through the
winding equals I = 1.7 A, the total Fig. 3.65.
number of turns is N = 1000, the ratio

of the outside diameter to the inside one is m = 1.6, and the
height is equal to k = 5.0 cm.
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3.243. Find the magnetic moment of a thin round loop with cur-
rent if the radius of the loop is equal to R = 100 mm and the mag-
netic induction at its centre is equal to B = 6.0 uT.

3.244. Calculate the magnetic moment of a thin wire with a cur-
rent ] = 0.8 A, wound tightly on half a tore (Fig. 3.66). The diameter
of the cross-section of the tore is equal to d = 5.0 cm, the number
of turns is N = 500.

Fig. 3.66. Fig. 3.67.

3.245. A thin insulated wire forms a plane spiral of N = 100
tight turns carrying a current I = 8 mA. The radii of inside and
outside turns (Fig. 3.67) are equal to ¢ = 50 mm and b = 100 mm.
Find:

(a) the magpetic induction at the centre of the spiral;

(b) the magnetic moment of the spiral with a given current.

3.246. A non-conducting thin dise of radius R charged uniformly
over one side with surface density ¢ rotates about its axis with
an angular velocity . Find:

(a) the magnetic induction at the centre of the disc;

(b) the magnetic moment of the disc.

3.247. A non-conducting sphere of radius R = 50 mm charged
uniformly with surface density ¢ = 10.0 uC/m? rotates with an
angular velocity @ = 70 rad/s about the axis passing through its
centre. Find the magnetic induction at the centre of the sphere.

3.248. A charge g is uniformly distributed over the volume of
a uniform ball of mass m and radius £ which rotates with an angular
velocity ® about the axis passing through its centre. Find the respec-
tive magnetic moment and its ratio to the mechanical moment.

3.249. A long dielectric cylinder of radius R is statically polarized
so that at all its points the polarization is equal to P = ar, where
o is a positive constant, and r is the distance from the axis. The
cylinder is set into rotation about its axis with an angular velocity o.
Find the magnetic induction B at the centre of the cylinder.

3.250. Two protons move parallel to each other with an equal
velocity v = 300 km/s. Find the ratio of forces of magnetic and
electrical interaction of the protons.
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3.251. Find the magnitude and direction of a force vector acting
on a unit length of a thin wire, carrying a current 7 = 8.0 A, at
a point O, if the wire is bent as shown in

(a) Fig. 3.68a, with curvature radius R = 10 cm;

(b) Fig. 3.68b, the distance between the long parallel segments
of the wire being equal to I = 20 cm.

3.252. A coil carrying a current / = 10 mA is placed in a uniform
magnetic field so that its axis coincides with the field direction.
The single-layer winding of the coil is made of copper wire with

0 l
<h R
(a) b

Fig. 3.68. Fig. 3.69.

diameter d = 0.10 mm, radius of turns is equal to R = 30 mm.
At what value of the induction of the external magnetic field can
the coil winding be ruptured?

3.253. A copper wire with cross-sectional area S = 2.5 mm?
bent to make three sides of a square can turn about a horizontal
axis 00’ (Fig. 3.69). The wire is located in uniform vertical magnetic
field. Find the magnetic induction if on passing a current I = 16 A
through the wire the latter deflects by an angle 8 = 20°.

3.254. A small coil ¢ with ¥ = 200 turns is mounted on one
end of a balance beam and introduced between the poles of an electro-
magnet as shown in Fig. 3.70. The cross-sectional area of the coil

s
M

B

Fig. 3.70,

is § = 1.0 cm?, the length of the arm OA of the balance beam is
] = 30 cm. When there is no current in the coil the balance is in
equilibrium. On passing a current / = 22 mA through the coil the
equilibrium is restored by putting the additional counterweight of
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mass Am = 60 mg on the balance pan. Find the magnetic induction
at the spot where the coil is located.

3.255. A square frame carrying a current J = 0.90 A is located
in the same plane as a long straight wire carrying a current [, =
= 5.0 A. The frame side has a length a = 8.0 cm. The axis of the
frame passing through the midpoints of opposite sides is parallel to
the wire and is separated from it by the distance which is = 1.5
times greater than the side of the frame. Find:

(a) Ampere force acting on the frame;

(b) the mechanical work to be performed in order to turn the
frame through 180° about its axis, with the currents maintained
constant.

3.256. Two long parallel wires of negligible resistance are con-
nected at one end to a resistance R and at the other end to a dc volt-
age source. The distance between the axes of the wires is 1 = 20 times
greater than the cross-sectional radius of each wire. At what value
of resistance R does the resultant force of interaction between the
wires turn into zero?

3.257. A direct current I flows in a long straight conductor whose
cross-section has the form of a thin half-ring of radius R. The same
current flows in the opposite direction along a thin conductor located
on the “axis” of the first conductor (point O in Fig. 3.61). Find the
magnetic interaction force between the given con-
ductors reduced to a unit of their length. i

3.258. Two long thin parallel conductors of the a
shape shown in Fig. 3.71 carry direct currents I, |
and I,. The separation between the conductors is a, T
the width of the right-hand conductor is equal to b. 7, I,
With both conductors lying in one plane, find the U

magnetic interaction force between them reduced
to a unit of their length.

3.259. A system consists of two parallel planes
carrying currents producing a uniform magnetic Fig. 3.71.
field of induction B between the planes. Outside
this space there is no magnetic field. Find the magnetic force acting
per unit area of each plane.

3.260. A conducting current-carrying plane is placed in an external
uniform magnetic field. As a result, the magnetic induction becomes

8 B 8 B B,

by
2,/ 2.

(2) ()] (©)
Fig. 3.72.
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equal to B, on one side of the plane and to B, on the other. Find
the magnetic force acting per unit area of the plane in the cases
illustrated in Fig. 3.72. Determine the direction of the current in
the plane in each case.

3.261. In an electromagnetic pump designed for transferring mol-
ten metals a pipe section with metal is located in a uniform magnetic
field of induction B (Fig. 3.73). A current
I is made to flow across this pipe section g
in the direction perpendicular both to the
vector B and to the axis of the pipe. Find

the gauge pressure produced by the pump —
if B=040T,I =100 A, and a = 2.0 cm.

3.262. A current [ flows in a long thin- a ';,’;,'/};
walled cylinder of radius R. What pressure Y 14222

do the walls of the cylinder experience?

3.263. What pressure does the lateral
surface of a long straight solenoid with n
turns per unit length experience when a current I flows through it?

3.264. A current I flows in a long single-layer solenoid with cross-
sectional radius R. The number of turns per unit length of the sole-
noid equals n. Find the limiting current at which the winding may
rupture if the tensile strength of the wire is equal to Fi;py,.

3.265. A parallel-plate capacitor with area of each plate equal to
S and the separation between them to d is put into a stream of con-
ducting liquid with resistivity p. The liquid moves parallel to the
plates with a constant velocity v. The whole system is located in
a uniform magnetic field of induction B, vector B being parallel to
the plates and perpendicular to the stream direction. The capacitor
plates are interconnected by means of an external resistance R.
What amount of power is generated in that resistance? At what
value of R is the generated power the highest? What is this highest
power equal to?

3.266. A straight round copper conductor of radius R = 5.0 mm
carries a current I = 50 A. Find the potential difference between
the axis of the conductor and its surface. The concentration of the
conduction electrons in copper is equal to n = 0.9-10%® cm-3.

3.267. In Hall effect measurements in a sodium conductor the
strength of a transverse field was found to be equal to E = 5.0 pV/em
with a current density j = 200 A/cm? and magnetic induction B =
= 1.00 T. Find the concentration of the conduction electrons and
its ratio to the total number of atoms in the given conductor.

3.268. Find the mobility of the conduction electrons in a copper
conductor if in Hall effect measurements performed in the magnetic
field of induction B = 100 mT the transverse electric field strength
of the given conductor turned out to be 1 = 3.1:10® times less than
that of the longitudinal electric field.

3.269. A small current-carrying loop is located at a distancer
from a long straight conductor with current 7. The magnetic moment
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of the loop is equal to p. Find the magnitude and direction of the
force vector applied to the loop if the vector p,,

(a) is parallel to the straight conductor;

(b) is oriented along the radius vector r;

(c) coincides in direction with the magnetic field produced by the
current I at the point where the loop is located.

3.270. A small current-carrying coil having a magngtic moment
Pm is located at the axis of a round loop of radius R with current I
flowing through it. Find the magnitude of the vector f'orce applied
to the coil if its distance from the centre of the loop is equal to =
and the vector p,, coincides in direction with the axis of the loop.

3.271. Find the interaction force of two coils with magnetic mo-
ments p;m = 4.0 mA-m? and pyn, = 6.0 mA-m? and collinear axes if
the separation between the coils is equal to I = 20 cm which exceeds
considerably their linear dimensions. ' '

3.272. A permanent magnet has the shape of a sgfﬁclently thin
disc magnetized along its axis. The radius of the disc is R = 1.0 cm.
Evaluate the magnitude of a molecular current I’ flowing along the
rim of the disc if the magnetic induction at the point on the axis of
the disc, lying at a distance z = 10 cm from its centre, is equal to
B = 30 pT.

3.273. The magnetic induction in vacuum at a plane surf_ace of
a uniform isotropic magnetic is equal to B, the vector B forming an
angle o with the normal of the surface. The permeabll‘lty of the magl'le't—
ic is equal to p. Find the magnitude of the magnetic induction B’ in
the magnetic in the vicinity of its surface.

3.274. The magnetic induction in vacuum at a plane surface of
a magnetic is equal to B and the vector B forms an angle 6 with the

e

Fig. 3.74.

normal n of the surface (Fig. 3.74). The permeability of the magnetic
is equal to p. Find: )
(a()I the ﬂul;( of the vector H through the spherical su'rface S of
radius R, whose centre lies on the surface of the magnetic; h
(b) the circulation of the vector B around the square path T’ wit

side [ located as shown in the figure. ) S
3.275. A direct current I flows in a long round uniform cylindrica

wire made of paramagnetic with susceptibility x- Find:
(a) the surface molecular current /g
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(b) the volume molecular current I.
How are these currents directed toward each other?

3.276. Half of an infinitely long straight current-carrying solenoid
is filled with magnetic substance as shown in Fig. 3.75. Draw the

S A a

Fig. 3.75.

appreximate plots of magnetic induction B, strength H, and magne-
tization J on the axis as functions of z.

3.277. An infinitely long wire with a current I flowing in it is
located in the boundary plane between two non-conducting media
with permeabilities p; and p,. Find the modulus of the magnetic
induction vector throughout the space as a function of the distance
r from the wire. It should be borne in mind that the lines of the vec-
tor B are circles whose centres lie on the axis of the wire.

3.278. A round current-carrying loop lies in the plane boundary
between magnetic and vacuum. The permeability of the magnetic
is equal to p. Find the magnetic induction B at an arbitrary point on
the axis of the loop if in the absence of the magnetic the magnetic
induction at the same point becomes equal to B,. Generalize the
obtained result to all points of the field.

3.279. When a ball made of uniform magnetic is introduced into
an external uniform magnetic field with induction B,, it gets uniform-
ly magnetized. Find the magnetic induction B inside the ball with
permeability p; recall that the magnetic field inside a uniformly mag
netized ball is uniform and its strength is equal to H' = — J/3,
where J is the magnetization.

3.280. N = 300 turns of thin wire are uniformly wound on a per-
manent magnet shaped as a cylinder whose length is equal to [ =
= 15 cm. When a current / = 3.0 A was passed through the wiring
the field outside the magnet disappeared. Find the coercive force
H. of the material from which the magnet was manufactured.

3.281. A permanent magnet is shaped as a ring with a narrow gap
between the poles. The mean diameter of the ring equals d = 20 cm.
The width of the gap is equal to b = 2.0 mm and the magnetic induc-
tion in the gap is equal to B.= 40 mT. Assuming that the scattering
of the magnetic flux at the gap edges is negligible, find the modulus
of the magnetic field strength vector inside the magnet.

3.282. An iron core shaped as a tore with mean radius R = 250 mm
supports a winding with the total number of turns N = 1000. The
core has a cross-cut of width & = 1.00 mm. With a current I =
= 0.85 A flowing through the winding, the magnetic induction in
the gap is equal to B = 0.75 T. Assuming the scattering of the magnet-
ic flux at the gap edges to be negligible, find the permeability of iron
under these conditions.
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3.283. Fig. 3.76 illustrates a basic magnetization curve of _ir.on
(commercial purity grade). Using this plot, draw the permeability

8T
5 »
17
/
025 -
Basic. magnetization cury.
of irom'( commercial
purity grade,
7 o1 0z a3 0% 05 06 H,kAfm

Fig. 3.76.

u as a function of the magnetic field strength H. At what value of
H is the permeability the greatest? What is pmex equal to?

3.284. A thin iron ring with mean diameter d = 50 cm supports
a winding consisting of N = 800 turns carrying current I = 3.0 A.
The ring has a cross-cut of width b = 2.0 mm. Neg}ectmg the scatter-
ing of the magnetic flux at the gap edges, and using the plot 's}}own
in Fig. 3.76, find the permeability of iron under these con(.htlops.

3.285. A long thin cylindrical rod made of par_amagnetlc w1t'h
magnetic susceptibility y and having a cross—septmnal area S is
located along the axis of a current-carrying coil.
One end of the rod is located at the coil centre where
the magnetic induction is equal to B whereas the
other end is located in the region where the mag-
netic field is practically absent. What is the force
that the coil exerts on the rod?

3.286. In the arrangement shown in Fig. 3.77 it
is possible to measure (by means of a balance) the M
force with which a paramagnetic ball of volume
V = 41 mm3 is attrabted to a pole of the electromag-
net M. The magnetic induction at the axis of the
poleshoe depends on the height z as B = B, exp (—az?®), where
By =1.50 T, a = 100 m~2. Find: ' _

(a) at what height z,, the ball experiences the maximum attrac-
tion;

Fig. 3.77.
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(b) the magnetic susceptibility of the paramagnetic if the maxim-
um attraction force equals F,,, = 160 pN.

3.287. A small ball of volume V made of paramagnetic with sus-
ceptibility ¥ was slowly displaced along the axis of a current-carrying
coil from the point where the magnetic induction equals B out to the
region where the magnetic field is practically absent. What amount
of work was performed during this process?

3.6. ELECTROMAGNETIC INDUCTION.
MAXWELL'’S EQUATIONS

e Faraday’s law of electromagnetic induction:

dd
€= — = (3.6a)
o In the case of a solenoid and doughnut coil:
@O = NO,, (3.6b)

where N is the number of turns, @, is the magnetic flux through each turn,
e Inductance of a solenoid:

L = up, n?V. (3.6¢)
o Intrinsic energy of a current and interaction energy of two currents:
LIz
W= 5 Wia== LI 1,. (3.6d)
e Volume density of magnetic field energy:
B2 BH
W= e 2= e 3.6e
2ppg 2 (©.6e)
e Displacement current density:
s éB
Jais= —+ (3.6f)
e Maxwell's equations in differential form:
V XxE= —%lti, V-B=0,
(3-6g)

., 9D
VXH=J+77 V:D=p,

where V X == rot (the rotor) and V. = div (the divergence).

e Field transformation formulas for transition from a reference frame K

to a reference frame K’ moving with the velocity v, relative to it.
In the case vy € ¢
El

= E + [v¢B], B’ =B — [v,El/¢? (3.6h)
In the general case
Ey=Ey, By =By, (3.61)
, E; +[vB] g — By —I[voE}/e?

LY TGl V i—(volep

where the symbols || and | denote the field components, respectively parallel
and perpendicular to the vector v,.
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3.288. A wire bent as a parabola y = az® is located in a uniform
magnetic field of induction B, the vector B being perpendicular to
the plane z, y. At the moment ¢ = 0 a connector starts sliding trans-
lationwise from the parabola apex with a constant acceleration w
(Fig. 3.78). Find the emf of electromagnetic induction in the loop
thus formed as a function of y.

8
w ® A Vj
n A 4]
g z g c
Fig. 3.78. Fig. 3.79.

3.289. A rectangular loop with a sliding connector of length !
is located in a uniform magnetic field perpendicular to the loop plane
(Fig. 3.79). The magnetic induction is equal to B. The connector has
an electric resistance R, the sides AB and CD have resistances R,
and R, respectively. Neglecting the self-inductance of the laop,
find the current flowing in the connector during its motion with a
constant velocity v.

3.290. A metal disc of radius @ = 25 cm rotates with a constant
angular velocity o = 130 rad/s about its axis. Find the potential
difference between the centre and the rim of the disc if

(a) the external magnetic field is absent;

(b) the external uniform magnetic field of induction B = 5.0 mT
is directed perpendicular to the disc.

3.991. A thin wire AC shaped as a semi-circle of diameter d =
— 90 cm rotates with a constant angular velocity @ = 100 rad/s
in a uniform magnetic field of induction B = 5.0 mT, with
o 14 B. The rotation axis passes through the end A of the wire and
is perpendicular to the diameter AC. Find the value of a line integral

S E dr along the wire from point 4 to point C. Generalize the ob-

tained result.

3.292. A wire loop enclosing a semi-circle of radius e is located
on the boundary of a uniform magnetic field of induction B
(Fig. 3.80). At the moment ¢ = O the loop is set into rotation with
a constant angular acceleration f about an axis O coinciding with a
line of vector B on the boundary. Find the emf induced in the loop
as a function of time . Draw the approximate plot of this function.
The arrow in the figure shows the emf direction taken to be positive.

3.293. A long straight wire carrying a current [ and a Il-shaped
conductor with sliding connector are located in the same plane as
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shown in Fig. 3.81. The connector of length ! and resistance R slides
to the right with a constant velocity v. Find the current induced in

Fig. 3.80.

Fig. 3.81.

the loop as a function of separation r between the connector and the
straight wire. The resistance of the Il-shaped conductor and the self-
inductance of the loop are assumed to be negligible.

3.294. A square frame with side a and a long straight wire carrying
a current I are located in the same plane as shown in Fig. 3.82. The
frame translates to the right with a constant velocity v. Find the emf
induced in the frame as a function of distance z.

Fig. 3.82.

Fig. 3.83.

3.2‘95‘. A metal rod of mass m can rotate about a horizontal axis
O, sliding along a circular conductor of radius e (Fig. 3.83). The
arrangement is located in a uniform magnetic field of induction B
directed perpendicular to the ring plane. The axis and the ring are
9onnected to an emf source to form a circuit of resistance R. Neglect-
ing the friction, circuit inductance, and ring resistance, find the law
according to which the source emf must vary to make the rod rotate
with a constant angular velocity .

3.296. A copper connector of mass m slides down two smooth cop-
per bars, set at an angle a to the horizontal, due to gravity (Fig. 3.84).
At the top the bars are interconnected through a resistance R. The
separation between the bars is equal to /. The system is located in
a uniform magnetic field of induction B, perpendicular to the plane
in which the connector slides. The resistances of the bars, the connect-
or and the sliding contacts, as well as the self-inductance of the loop,
are assumed to be negligible. Find the steady-state velocity of the
connector.
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3.297. The system differs from the one examined in the foregoing

problem (Fig. 3.84) by a capacitor of capacitance C replacing the
resistance R. Find the acceleration of the connector.

R
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Fig. 3.84. Fig. 3.85.

3.298. A wire shaped as a semi-circle of radius a rotates about an
axis 00’ with an angular velocity ® in a uniform magnetic field of
induction B (Fig. 3.85). The rotation axis is perpendicular to the
field direction. The total resistance of the circuit is equal to R. Neg-
lecting the magnetic field of the induced current, find the mean
amount of thermal power being generated in the loop during a
rotation period.

3.299. A small coil is introduced between the poles of an electro-
magnet so that its axis coincides with the magnetic field direction.
The cross-sectional area of the coil is equal to S = 3.0 mm?, the
number of turns is ¥ = 60. When the coil turns through 180° about
its diameter, a ballistic galvanometer connected to the coil indicates
a charge g = 4.5 uC flowing through it. Find the magnetic induction
magnitude between the poles provided the total resistance of the
electric circuit equals B = 40 Q.

3.300. A square wire frame with side ¢ and a straight conductor
carrying a constant current / are located in the same plane (Fig. 3.86)

b 0 .
— =T
|
I a L ¢
- N o a
0 -
Fig. 3.86. Fig. 3.87.

The inductance and the resistance of the frame are equal to L and R
respectively. The frame was turned through 180° about the axis 00’
separated from the current-carrying conductor by a distance b.
Find the electric charge having flown through the frame.

3.301. A long straight wire carries a current I,. At distances a
and b from it there are two other wires, parallel to the former one,
which are interconnected by a resistance R (Fig. 3.87). A connector
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slides without friction along the wires with a constant velocity v.
Assuming the resistances of the wires, the connector, the sliding
contacts, and the self-inductance of the freme to be negligible, find:

(a) the magnitude and the direction of the current induced in
the connector;

(b) the force required to maintain the connector’s velocity con-
stant.

3.302. A conducting rod AB of mass m slides without friction
over two long conducting rails separated by a distance ! (Fig. 3.88).
At the left end the rails are interconnected by a resistance R. The
system is located in a uniform magnetic field perpendicular to the
plane of the loop. At the moment ¢ = 0 the rod AB starts moving to
the right with an initial velocity v,. Neglecting the resistances of the
rails and the rod AB, as well as the self-inductance, find:

(a) the distance covered by the rod until it comes to a standstill;

(b) the amount of heat generated in the resistance R during this
process.

A A
/em l—-»”"@ﬁ ®F Rf—=r
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Fig. 3.88. Fig. 3.89.

3.303. A connector AB can slide without friction along a II-
shaped conductor located in a horizontal plane (Fig. 3.89). The con-
nector has a length I, mass m, and resistance R. The whole system is
located in a uniform magnetic field of induction B directed vertically.
At the moment £ = 0 a constant horizontal force F starts acting on
the connector shifting it translationwise to the right. Find how the
velocity of the connector varies with time f. The inductance of the
loop and the resistance of the II-shaped conductor are assumed to
be negligible.

3.304. Fig. 3.90 illustrates plane figures made of thin conductors
which are located in a uniform magnetic field directed away from a

oGO
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Fig. 3.90.

reader beyond the plane of the drawing. The magnetic induction
starts diminishing. Find how the currents induced in these loops are
directed.
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3.305. A plane loop shown in Fig. 3.91 is shaped as two squares
with sides @ = 20 cm and b = 10 cm and is introduced into a uni-
form magnetic field at right angles to the loop’s plane. The magnetic
induction varies with time as B = B, sin ot, where By = 10 mT
and @ = 100 s—! . Find the amplitude of
the current induced in the loop if its resis-
tance per unit length is equal to p = a
50 mQ/m. The inductance of the loop is to b
be neglected.

3.306. A plane spiral with a great num-
ber N of turns wound tightly to one another
is located in a uniform magnetic field per-
pendicular to the spiral’s plane. The outside
radius of the spiral’s turns is equal to a.
The magnetic induction varies with time as B = B, sin ot, where
B, and @ are constants. Find the amplitude of emf induced in
the spiral.

3.307. A Il-shaped conductor is located in a uniform magnetic
field perpendicular to the plane of the conductor and varying with

Fig. 3.91.

time at the rate B = 0.10 T/s. A conducting connector starts mov-
ing with an acceleration w = 10 cm/s* along the parallel bars of the
conductor. The length of the connector is equal to ! = 20 cm. Find
the emf induced in the loop t = 2.0 s after the beginning of the
motion, if at the moment ¢ = 0 the loop area and the magnetic
induction are equal to zero. The inductance of the loop is to be
neglected.

3.308. In a long straight solenoid with cross-sectional radius a
and number of turns per unit length n a current varies with a con-

stant velocity I A/s. Find the magnitude of the eddy current field
strength as a function of the distance r from the solenoid axis. Draw
the approximate plot of this function.

3.309. A long straight solenoid of cress-sectional diameter d =
= 5 e¢m and with n = 20 turns per one cm of its length has a round
turn of copper wire of cross-sectional area S = 1.0 mm? tightly put
on its winding. Find the current flowing in the turn if the current

in the solenoid winding is increased with a constant velocity I =
= 100 A/s. The inductance of the turn is to be neglected.

3.310. A long solenoid of cross-sectional radius a has a thin insu-
lated wire ring tightly put on its winding; one half of the ring has
the resistance 7 times that of the other half. The magnetic induction
produced by the solenoid varies with time as B = bt, where b is
a constant. Find the magnitude of the electric field strength in the
ring.

3.311. A thin non-conducting ring of mass m carrying a charge ¢
can freely rotate about its axis. At the initial moment the ring was
at rest and no magnetic field was present. Then a practically uniform
magnetic field was switched on, which was perpendicular to the plane
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of the ring and increased with time according to a certain law B (2).
Find the angular velocity @ of the ring as a function of the induction
B (t).

3.312. A thin wire ring of radius a and resistance r is located in-
side a long solenoid so that their axes coincide. The length of the
solenoid is equal to I, its cross-sectional radius, to b. At a certain
moment the solenoid was connected to a source of a constant voltage
V. The total resistance of the circuit is equal to R. Assuming the
inductance of the ring to be negligible, find the maximum value of
the radial force acting per unit length of the ring.

3.313. A magnetic flux through a stationary loop with a resistance
R varies during the time interval T as @ = at (v — f). Find the
amount of heat generated in the loop during that time. The inductance
of the loop is to be neglected.

3.314. In the middle of a long solenoid there is a coaxial ring of
square cross-section, made of conducting material with resistivity
p. The thickness of the ring is equal to b, its inside and outside radii
are equal to a and b respectively. Find the current induced in the
ring if the magnetic induction produced by the solenoid varies with
time as B = Pf, where B is a constant. The inductance of the ring
is to be neglected.

3.315. How many metres of a thin wire are required to manufac-
ture a solenoid of length I, = 100 cm and inductance L = 1.0 mH
if the solenoid’s cross-sectional diameter is considerably less than its
length?

3.316. Find the inductance of a solenoid of length ! whose
winding is made of copper wire of mass m. The winding resistance
is equal to R. The solenoid diameter is considerably less than its
length.

3.317. A coil of inductance L = 300 mH and resistance R =
— 140 mQ is connected to a constant voltage source. How soon will
the coil current reach 1 =50% of the steady-state value?

3.318. Calculate the time constant 7 of a straight solenoid of length
] = 1.0 m having a single-layer winding of copper wire whose total
mass is equal to m = 1.0 kg. The cross-sectional diameter of the
solenoid is assumed to be considerably less than its length.

Note. The time constant t is the ratio L/R, where L is inductance
and R is active resistance.

3.319. Find the inductance of a unit length of a cable cousisting
of two thin-walled coaxial metallic cylinders if the radius of the out-
side cylinder is m = 3.6 times that of the inside one. The perme-
ability of a medium between the cylinders is assumed to be equal to
unity.

3.320. Calculate the inductance of a doughnut solenoid whose
inside radius is equal to b and cross-section has the form of a square
with side a. The solenoid winding consists of N turns. The space in-
side the solenoid is filled up with uniform paramagnetic having per-
meability p.



3.321. Calculate the inductance of a unit length of a double tape
line (Fig. 3.92) if the tapes are separated by a distance 2 which is
considerably less than their width b,
namely, b/h = 50.

3.322. Find the inductance of a
unit length of a double line if the
radius of each wire is 1 times less
than the distance between the axes
of the wires. The field inside the - v
wires is to be neglected, the per- 6
meability is assumed to be equal
to unity throughout, and n > 1.

3.323. A superconducting round
ring of radius e and inductance L
was located in a uniform magnetic field of induction B. The ring plane
was parallel to the vector B, and the current in the ring was equal to
zero. Then the ring was turned through 90° so that its plane became
perpendicular to the field. Find:

(a) the current induced in the ring after the turn;

(b) the work performed during the turn.

3.324. A current I, = 1.9 A flows in a long closed solenoid.
The wire it is wound of is in a superconducting state. Find the
current flowing in the solenoid when the length of the solenoid is
increased by n = 3%.

3.325. A ring of radius ¢ = 50 mm made of thin wire of radius
b =1.0 mm was located in a uniform magnetic field with induction
B =0.50 mT so that the ring plane was perpendicular to the vector B.
Then the ring was cooled down to a superconducting state, and the
magnetic field was switched off. Find the ring current after that. Note
that the inductance of a thin ring along which the surface current

flows is equal to L = pga (ln §ba—— 2) .

3.326. A closed circuit consists of a source of constant emt & and
a choke coil of inductance L connected in series. The active resistance
of the whole circuit is equal to R. At the moment ¢ = 0 the choke
coil inductance was decreased abruptly n times. Find the current in
the circuit as a function of time ¢. ‘

Instruction. During a stepwise change of inductance the total
magnetic flux (flux linkage) remains constant.

3.327. Find the time dependence of the current flowing through
the inductance L of the circuit shown in Fig. 3.93 after the switch
Sw is shorted at the moment ¢ = 0.

3.328. In the circuit shown in Fig. 3.94 an emf &, a resistance R,
and coil inductances L; and L, are known. The internal resistance of
the source and the coil resistances are negligible. Find the steady-
state currents in the coils after the switch Sw was shorted.

3.329. Calculate the mutual inductance of a long straight wire and
a rectangular frame with sides a and b. The frame and the wire lie
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Fig. 3.92.

in the same plane, with the side b being closest to the wire, separated
by a distance ! from it and oriented parallel to it.

Ly
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Fig. 3.93. Fig. 3.94.

3.330. Determine the mutual inductance of a doughnut coiland
an infinite straight wire passing along its axis. The coil has a rectan-
gular cross-section, its inside radius is equal to a and the outside one,
to b. The length of the doughnut’s cross-sectional side parallel to the
wire is equal to k. The coil has N turns. The system is located in a
uniform magnetic with permeability u.

3.331. Two thin concentric wires shaped as circles with radii a
and b lie in the same plane. Allowing for ¢ < b, find:

(a) their mutual inductance;

(b) the magnetic flux through the surface enclosed by the outside
wire, when the inside wire carries a current .

3.332. A small cylindrical magnet M (Fig. 3.95) is placed in the
centre of a thin coil of radius a consisting of N turns. The coil is con-
nected to a ballistic galvanometer. The active resistance of the whole
circuit is equal to R. Find the magnetic moment of the magnet if
its removal from the coil results in a charge ¢ flowing through the
galvanometer.

3.333. Find the approximate formula expressing the mutual in-
ductance of two thin coaxial loops of the same radius a if their cen-
tres are separated by a distance I, with I > a,
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Fig. 3.96.

Fig. 3.95.

3.334. There are two stationary loops with mutual inductance
Ly,. The current in one of the loops starts to be varied as I, = at,
where a is a constant, £ is time. Find the time dependence I, () of
the current in the other loop whose inductance is L, and resistance R.

3.335. A coil of inductance L = 2.0 uH and resistance R = 1.0 Q
is connected to a source of constant emf § = 3.0 V (Fig. 3.96). A
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resistance Ry, = 2.0 Q is connected in parallel with the coil. Find the
amount of heat generated in the coil after the switch Sw is disconnect-
ed. The internal resistance of the source is negligible.

3.336. An iron tore supports N = 500 turns. Find the magnetic
field energy if a current / = 2.0 A produces a magnetic flux across
the tore’s cross-section equal to @ = 1.0 mWb.

3.337. An iron core shaped as a doughnut with round cross-sec-
tion of radius a = 3.0 cm carries a winding of N = 1000 turns through
which a current I = 1.0 A flows. The mean radius of the doughnut
is b = 32 e¢m. Using the plot in Fig. 3.76, find the magnetic energy
stored up in the core. A field strength H is supposed to be the same
throughout the cross-section and equal to its magnitude in the cen-
tre of the cross-section.

3.338. A thin ring made of a magnetic has a mean diameter
d = 30 cm and supports a winding of N = 800 turns. The cross-
sectional area of the ring is equal to S = 5.0 cm® The ring has a
cross-cut of width b = 2.0 mm. When the winding carries a certain
current, the permeability of the magnetic equals p = 1400. Neglect-
ing the dissipation of magnetic flux at the gap edges, find:

(a) the ratio of magnetic energies in the gap and in the magnetic;

(b) the inductance of the system; do it in two ways: using the flux
and using the energy of the field.

3.339. A long cylinder of radius a carrying a uniform surface charge
rotates about its axis with an angular velocity ®. Find the mag-
netic field energy per unit length of the cylinder if the linear charge
density equals A and p = 1.

3.340. At what magnitude of the electric field strength in vacuum
the volume energy density of this field is the same as that of the mag-
netic field with induction B = 1.0 T (also in vacuum).

3.341. A thin uniformly charged ring of radius a = 10 cm rotates
about its axis with an angular velocity © = 100 rad/s. Find the ra-
tio of volume energy densities of magnetic and electric fields on the
axis of the ring at a point removed from its centre by a distance
l = a.

3.342. Using the expression for volume density of magnetic ener-
gy, demonstrate that the amount of work contributed to magneti-
zation of a unit volume of para- or diamagnetic, is equal to 4 =
= — JB/2.

8.343. Two identical coils, each of inductance L, are interconnected
(a) in series, (b) in parallel. Assuming the mutual inductance of the
coils to be negligible, find the inductance of the system in both cases.

3.344. Two solenoids of equal length and almost equal cross-
sectional area are fully inserted into one another. Find their mutual
inductance if their inductances are equal to L; and L,.

3.345. Demonstrate that the magnetic energy of interaction of
two current-carrying loops located in vacuum can be represented as

Wie = (1/py) S B,B, dV, where B, and B, are the magnetic inductions
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within a volume element dV, produced individually by the currents
of the first and the second loop respectively.

3.346. Find the interaction energy of two loops carrying currents
I, and I, if both loops are shaped as circles of radii ¢ and b, with
a € b. The loops’ centres are located at the same point and their
planes form an angle 6 between them.

3.3.47. The space between two concentric metallic spheres is filled
up with a uniform poorly conducting medium of resistivity p and
permittivity e. At the moment t = 0 the inside sphere obtains a
certain charge. Find:

(a) the relation between the vectors of displacement current den-
sity and conduction current density at an arbitrary point of the me-
dium at the same moment of time;

(b) the displacement current across an arbitrary closed surface
wholly located in the medium and enclosing the internal sphere, if
at the given moment of time the charge of that sphere is equal to g.

3.348. A parallel-plate capacitor is formed by two discs with a
uniform poorly conducting medium between them. The capacitor
was initially charged and then disconnected from a voltage source.
Neglecting the edge effects, show that there is no magnetic field
between capacitor plates.

3.349. A parallel-plate air condenser whose each plate has an
area S == 100 cm? is connected in series to am ac circuit. Find the
electric field strength amplitude in the capacitor if the sinusoidal
current amplitude in lead wires is equal to I,, = 1.0 mA and the
current frequency equals o = 1.6-107s-1,

3.350. The space between the electrodes of a parallel-plate capa-
citor is filled with a uniform poorly conducting medium of conducti-
vity o and permittivity . The capacitor plates shaped as round discs
are separated by a distance d. Neglecting the edge effects, find the
mngetic field strength between the plates at a distance r from their
axis if an ac voltage V = V,, cos ot is applied to the capacitor.

3.351. A long straight solenoid has n turns per unit length. An
alternating current I = I, sin ot flows through it. Find the displace-
ment current density as a function of the distance r from the solenoid
axis. The cross-sectional radius of the solenoid equals R.

3.352. A point charge ¢ moves with a non-relativistic velocity
v == const. Find the displacement current density j4 at a point locat-
ed at a distance r from the charge on a straight line

(a) coinciding with the charge path;

(b) perpendicular to the path and passing through the charge.

3.353. A thin wire ring of radius a carrying a charge g approaches
the observation point P so that its centre moves rectilinearly with
a constant velocity v. The plane of the ring remains perpendicular
to thg motion direction. At what distance z,, from the point P will
the ring be located at the moment when the displacement current
density at the point P becomes maximum? What is the magnitude of
this maximum density?
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3.354. A point charge g moves with a non-relativistic velocity
v = const. Applying the theorem for the circulation of the vector H
around the dotted circle shown in Fig. 3.97, find H at the point A
as a function of a radius vector r and velocity v of the charge.

3.355. Using Maxwell's equations, show that

(a) a time-dependent magnetic field cannot exist without an elec-
tric field;

(b) a uniform electric field cannot exist in the presence of a time-
dependent magnetic field;

(c) inside an empty cavity a uniform electric (or magnetic) field
can be time-dependent.

3.356. Demonstrate that the law of electric charge conservation,
ie. V-j = —gp/ot, follows from Maxwell’s equations.

3.357. Demonstrate that Maxwell’s equations VXE = — §B/dt
and V-B = 0 are compatible, i.e. the first one does not contradict
the second one.

3.358. In a certain region of the inertial reference frame there is
magnetic field with induction B rotating with angular velocity .
Find V XE in this region as a function of vectors ® and B.

3.359. In the inertial reference frame K there is a uniform magnetic
field with induction B. Find the electric field strength in the frame
K’ which moves relative to the frame K with a non-relativistic ve-
locity v, with v_I B. To solve this problem, consider the forces acting
on an imaginary charge in both reference frames at the moment when
the velocity of the charge in the frame K’ is equal to zero.
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Fig. 3.97. Fig. 3.98.

3.360. A large plate of non-ferromagnetic material moves with a
constant velocity v = 90 cm/s in a uniform magnetic field with in-
duction B = 50 mT as shown in Fig. 3.98. Find the surface density
of electric charges appearing on the plate as a result of its motion.

3.361. A long solid aluminum cylinder of radius a = 5.0 e¢m
rotates about its axis in a uniformm magnetic field with induction
B = 10 mT. The angular velocity of rotation equals o = 45 rad/s,
with @ 14 B. Neglecting the magnetic field of appearing charges,
find their space and surface densities.

3.362. A non-relativistic point charge g moves with a constant
velocity v. Using the field transformation formulas, find the magnet-
ic induction B produced by this charge at the point whose position
relative to the charge is determined by the radius vector r.
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3.363. Using Egs. (3.6h), demonstrate that if in the inertial ref-
erence frame K there is only electric or only magnetic field, in any
other inertial frame K’ both electric and magnetic fields will coexist
simultaneously, with E' | B’.

3.364. In an inertial reference frame K there is only magnetic
field with induction B = b (yi — zj)/ (z* + y?), where b is a con-
stant, i and j are the unit vectors of the z and y axes. Find the elec-
tric field strength E’ in the frame K’ moving relative to the frame
K with a constant non-relativistic velocity v = vk; k is the unit
vector of the z axis. The 2z’ axis is assumed to coincide with the z
axis. What is the shape of the field E’?

3.365. In an inertial reference frame K there is only electric field
of strength E = a (zi + yj)/(2® + y?), where a is a constant, i and
j are the unit vectors of the x and y axes. Find the magnetic induction
B’ in the frame K’ moving relative to the frame K with a constant
non-relativistic velocity v = vk; k is the unit vector of the z axis.
The z’ axis is assumed to coincide with the z axis. What is the shape
of the magnetic induction B’? |

3.366. Demonstrate that the transformation formulas (3.6h)
follow from the formulas (3.6i) at v, < ¢.

3.367. In an inertial reference frame K there is only a uniform
electric fileld £ = 8 kV/m in strength. Find the modulus and direc-
tion

(a) of the vector E’, (b) of the vector B’ in the inertial reference
frame K’ moving with a constant velocity v relative to the frame
K at an angle oo = 45° to the vector E. The velocity of the frame K’
is equal to a f = 0.60 fraction of the velocity of light.

3.368. Solve a problem differing from the foregoing one by a mag-
netic field with induction B = 0.8 T replacing the electric field.

3.369. Electromagnetic field has two invariant quantities. Using
the transformation formulas (3.6i), demonstrate that these quantities
are

(a) EB; (b) E* — ¢2B%.

3.370. In an inertial reference frame K there are two uniform mu-
tually perpendicular fields: an electric field of strength £ = 40 kV/m
and a magnetic field induction B = 0.20 mT. Find the electric
strength E’ (or the magnetic induction B’) in the reference frame
K' where only one field, electric or magnetic, is observed.

Instruction. Make use of the field invariants cited in the foregoing
problem.

3.371. A point charge ¢ moves uniformly and rectilinearly with
a relativistic velocity equal to a P fraction of the velocity of light
(B = v/c). Find the electric field strength E produced by the charge
at the point whose radius vector relative to the charge is equal to
r and forms an angle 6 with its velocity vector.
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3.7. MOTION OF CHARGED PARTICLES IN ELECTRIC
AND MAGNETIC FIELDS

e Lorentz force:

F = gE + ¢ (vB]. (3.7a)
e Motion equation of a relativistic particle:
d moVv

Sl i S (3.7b)
at Y 1= (vle)>
e Period of revolution of a charged particle in a uniform magnetic field:
2nm
T—_QT s (3.70)
where m is the relativistic mass of the particle, m = my/}/'1 — (vlc)2.
e Betatron condition, that is the condition for an electron to move along
a circular orbit in a betatron: "
B, = = (B), (3.7d)

where B, is the magnetic induction at an orbit’s point, (B) is the mean value
of the induction inside the orbit.

3.372. At the moment ¢ = 0 an electron leaves one plate of a par-
allel-plate capacitor with a negligible velocity. An accelerating
voltage, varying as V = at, where a = 100 V/s, is applied between
the plates. The separation between the plates is ! = 5.0 cm. What
is the velocity of the electron at the moment it reaches the opposite

late?

b 3.373. A proton accelerated by a potential difference V gets into
the uniform electric field of a parallel-plate capacitor whose plates
extend over a length I in the motion direction. The field strength
varies with time as E = at, where a is a constant. Assuming the pro-
ton to be non-relativistic, find the angle between the motion direc-
tions of the proton before and after its flight through the capacitor;
the proton gets in the field at the moment ¢ = 0. The edge effects are
to be neglected.

3.374. A particle with specific charge g/m moves rectilinearly due
to an electric field £ = E, — ax, where a is a positive constant, z
is the distance from the point where the particle was initially at
rest. Find:

(a) the distance covered by the particle till the moment it came
to a standstill;

(b) the acceleration of the particle at that moment.

3.375. An electron starts moving in a uniform electric field of
strength E = 10 kV/cm. How soon after the start will the kinetic
energy of the electron become equal to its rest energy?

3.376. Determine the acceleration of a relativistic electron moving
along a uniform electric field of strength E at the moment when its
kinetic energy becomes equal to T.

3.377. At the moment ¢ = 0 a relativistic proton flies with a ve-
locity v, into the region where there is a uniform transverse electric
field of strength E, with v, | E. Find the time dependence of

S
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() the angle 6 between the proton’s velocity vector v and the ini-
tial direction of its motion;

(b) the projection v, of the vector v on the initial direction of
motion.

3.378. A proton accelerated by a potential difference V' = 500 kV
flies through a uniform transverse magnetic field with induction
B = 0.51 T. The field occupies a region
of space d = 10 e¢m in thickness (Fig. 3.99).
Find the angle a through which the pro-
ton deviates from the initial direction of
its motion.

3.379. A charged particle moves along
a circle of radius r = 100 mm in a
uniform magnetic field with induction .
B = 10.0 mT. Find its velocity and pe- Fig. 3.99.
riod of revolution if that particle is

(a) a non-relativistic proton;

(b) a relativistic electron.

3.380. A relativistic particle with charge g and rest mass m,
moves along a circle of radius r in a uniform magnetic field of induc-
tion B. Find:

(a) the modulus of the particle’s momentum vector;

(b) the kinetic energy of the particle;

(¢) the acceleration of the particle.

3.381. Up to what values of kinetic energy does the period of
revolution of an electron and a proton in a uniform magnetic field
exceed that at non-relativistic velocities by n = 1.0%?

3.382. An electron accelerated by a potential difference V =
= 1.0 kV moves in a uniform magnetic field at an angle & = 30° to
the vector B whose modulus is 2 = 29 mT. Find the pitch of the
helical trajectory of the electron.

3.383. A slightly divergent beam of non-relativistic charged par-
ticles accelerated by a potential difference V propagates from a point
A along the axis of a straight solenoid. The beam is brought into
focus at a distance I from the point A at two successive values of
magnetic induction B; and B,. Find the specific charge g/m of the
particles.

3.384. A non-relativistic electron originates at a point 4 lying
on the axis of a straight solenoid and moves with velocity v at an
angle a to the axis. The magnetic induction of the field is equal to
B. Find the distance r from the axis to the point on the screen into
which the electron strikes. The screen is oriented at right angles to
the axis and is located at a distance [ from the point A.

3.385. From the surface of a round wire of radius e carrying a
direct current I an electron escapes with a velocity v, perpendicular
to the surface. Find what will be the maximum distance of the elec-
tron from the axis of the wire before it turns back due to the action
of the magnetic field generated by the current.
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3.386. A non-relativistic charged particle flies through the elec-
tric field of a cylindrical capacitor and gets into a uniform transverse
magnetic field with induction B (Fig. 3.100). In the capacitor the
particle moves along the arc of a circle, in the magnetic field, along
a semi-circle of radius r. The potential difference applied to the capa-
citor is equal to V, the radii of the electrodes are equal to a and b,
with ¢ << b. Find the velocity of the particle and its specific charge

g/m.
= 4
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Fig. 3.100. Fig. 3.101.

3.387. Uniform electric and magnetic fields with strength £ and
induction B respectively are directed along the y axis (Fig. 3.101).
A particle with specific charge g/m leaves the origin O in the direction
of the z axis with an initial non-relativistic velocity v,. Find:

(a) the coordinate y, of the particle when it crosses the y axis
for the nth time;

(b) the angle o between the particle’s velocity vector and the y
axis at that moment.

3.388. A narrow beam of identical ions with specific charge g/m,
possessing different velocities, enters the region of space, where there
are uniform parallel electric and magnetic fields with strength E
and induction B, at the point O (see Fig. 3.101). The beam direction
coincides with the z axis at the point O. A plane screen oriented at
right angles to the x axis is located at a distance [ from the point O.
Find the equation of the trace that the ions leave on the screen.
Demonstrate that at z < I it is the equation of a parabola.

3.389. A non-relativistic proton beam passes without deviation
through the region of space where there are uniform transverse mu-
tually perpendicular electric and magnetic fields with £ = 120 kV/m
and B = 50 mT. Then the beam strikes a grounded target. Find
the force with which the beam acts on the target if the beam current
is equal to 7 = 0.80 mA.

3.390. Non-relativistic protons move rectilinearly in the region of
space where there are uniform mutually perpendicular electric and
magnetic fields with £ = 4.0 kV/m and B =50 mT. The trajectory of
the protons lies in the plane zz (Fig. 3.102) and forms an angle
¢ = 30° with the z axis. Find the pitch of the helical trajectory along
which the protons will move after the electric field is switched off.

162

3.391. A beam of non-relativistic charged particles moves without
deviation through the region of space A (Fig. 3.103) where there are
transverse mutually perpendicular electric and magnetic fields with

\

e g e b —|
Fig. 3.102. Fig. 3.103.

strength E and induction B. When the magnetic field is switched off,
the trace of the beam on the screen § shifts by Az. Knowing the
distances a and b, find the specific charge ¢/m of the particles.

3.392. A particle with specific charge g/m moves in the region of
space where there are uniform mutually perpendicular electric and
magnetic fields with strength E and induc- y
tion B (Fig. 3.104). At the moment ¢t =0
the particle was located at the point O and
had zero velocity. For the non-relativistic
case find:

(a) the law of motion z (¢) and y (¢) of the
particle; the shape of the trajectory;

(b) the length of the segment of the trajecto-
ry between two nearest points at which the
velocity of the particle turns into zero; Fig. 3.104,

(c) the mean value of the particle’s veloc-
ity vector projection on the z axis (the drift velocity).

3.393. A system consists of a long cylindrical anode of radius a
and a coaxial cylindrical cathode of radius & (b << a). A filament
located along the axis of the system carries a heating current I pro-
ducing a magnetic field in the surrounding space. Find the least po-
tential difference between the cathode and anode at which the thermal
electrons leaving the cathode without initial velocity start reach-
ing the anode.

3.394. Magnetron is a device consisting of a filament of radius a
and a coaxial cylindrical anode of radius b which are located in a
uniform magnetic field parallel to the filament. An accelerating po-
tential difference V is applied between the filament and the anode.
Find the value of magnetic induction at which the electrons leaving
the filament with zero velocity reach the anode.

3.395. A charged particle with specific charge g/m starts moving
in the region of space where there are uniform mutually perpendicu-
lar electric and magnetic fields. The magnetic field is constant and
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has an induction B while the strength of the electric field varies with
time as E = E,, cos wt, where @ = gB/m. For the non-relativistic
case find the law of motion z (¢) and y (¢) of the particle if at the mo-
ment ¢ = 0 it was located at the point O (see Fig. 3.104). What is
the approximate shape of the trajectory of the particle?

3.396. The cyclotron’s oscillator frequency is equal to v = 10 MHz.
Find the effective accelerating voltage applied across the dees of that
cyclotron if the distance between the neighbouring trajectories of
protons is not less than Ar = 1.0 cm, with the trajectory radius
being equal to r = 0.5 m.

3.397. Protons are accelerated in a cyclotron so that the maximum
curvature radius of their trajectory is equal to r = 50 cm. Find:

(a) the kinetic energy of the protons when the acceleration is
completed if the magnetic induction in the cyclotron is B = 1.0 T;

(b) the minimum frequency of the cyclotron’s oscillator at which
the kinetic energy of the protons amounts to 7 = 20 MeV by the
end of acceleration.

3.398. Singly charged ions He* are accelerated in a cyclotron so
that their maximum orbital radius is r = 60 c¢cm. The frequency of
a cyclotron’s oscillator is equal to v = 10.0 MHz, the effective ac-
celerating voltage across the dees is ¥ = 50 kV. Neglecting the gap
between the dees, find:

(a) the total time of acceleration of the ion;

(b) the approximate distance covered by the ion in the process of
its acceleration.

3.399. Since the period of revolution of electrons in a uniform mag-
netic field rapidly increases with the growth of energy, a cyclotron
is unsuitable for their acceleration. This
drawback is rectified in a microtron
(Fig. 3.105) in which a change AT in the
period of revolution of an electron is
made multiple with the period of accele-
rating field T,. How many times has an
electron to cross the accelerating gap of
a microtron to acquire an energy W =
— 4.6 MeV if AT = T,, the magnetic

induction is equal to B = 107 mT, and ) Fig. 3.105
the frequency of accelerating field to g. oo
v = 3000 MHz?

3.400. The ill effects associated with the variation of the period
of revolution of the particle in a cyclotron due to the increase of its
energy are eliminated by slow monitoring (modulating) the frequency
of accelerating field. According to what law o () should this frequen-
cy be monitored if the magnetic induction is equal to B and the
particle acquires an energy AW per revolution? The charge of the
particle is ¢ and its mass is m. .

3.401. A particle with specific charge g/m is located inside a round
solenoid at a distance r from its axis. With the current switched into
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the winding, the magnetic induction of the field generated by the
solenoid amounts to B. Find the velocity of the particle and the cur-
vature radius of its trajectory, assuming that during the increase of
current flowing in the solenoid the particle shifts by a negligible
distance.

3.402. In a betatron the magnetic flux across an equilibrium orbit
of radius r = 25 cm grows during the acceleration time at practically

constant rate @ = 5.0 Wb/s. In the process, the electrons acquire an
energy W = 25 MeV. Find the number of revolutions made by the
electron during the acceleration time and the corresponding distance
covered by it.

3.403. Demonstrate that electrons move in a betatron along a
round orbit of constant radius provided the magnetic induction on
the orbit is equal to half the mean value of that inside the orbit
(the betatron condition).

3.404. Using the betatron condition, find the radius of a round
orbit of an electron if the magnetic induction is known as a function
of distance r from the axis of the field. Examine this problem for the
specific case B = B, — ar®, where B, and a are positive constants.

3.405. Using the betatron condition, demonstrate that the strength
of the eddy-current field has the extremum magnitude on an equilib-
rium orbit.

3.406. In a betatron the magnetic induction on an equilibrium
orbit with radius r = 20 cm varies during a time interval At =
= 1.0 ms at practically constant rate from zero to B = 0.40 T. Find
the energy acquired by the electron per revolution.

3.407. The magnetic induction in a betatron on an equilibrium
orbit of radius r varies during the acceleration time at practically
constant rate from zero to B. Assuming the initial velocity of the
electron to be equal to zero, find:

(a) the energy acquired by the electron during the acceleration
time;

(b) the corresponding distance covered by the electron if the acce-
leration time is equal to A,



PART FOUR
OSCILLATIONS AND WAVES

4.1. MECHANICAL OSCILLATIONS
e Harmonic motion equation and its solution:

It 0iz=0, z=acos (wgt+a), (4.1a)

where @, is the natural oscillation frequency.
e Damped oscillation equation and its solution:

z-+2pz+032=0, z=age Pt cos (0t +a), (4.1b)
where B is the damping coefficient, ® is the frequency of damped oscillations:
o=V oj—p7. 4.1¢)
o Logarithmic damping decrement A and quality factor Q:
A= BT, Q= n/i, (4.1d)

where T = 2n/o.
e Forced oscillation equation and its steady-state solution:

Z+4 2Bz + 03z =fq cos of, z=a cos (ot— ), (4.1¢)
where
fo 2w

a= tan = —/———,
V (0f—0?)21-4p%07 oot
o Maximum shift amplitude occurs at

Ores =V 0§— 2% (4.1g)

4.1. A point oscillates along the z axis according to the law z =
= a cos (ot — n/4). Draw the approximate plots

(a) of displacement z, velocity projection v,, and acceleration
projection w. as functions of time ¢; ‘

(b) velocity projection v, and acceleration projection w, as func-
tions of the coordinate z.

4.2. A point moves along the z axis according to the law z =
= a sin® (ot — n/4). Find:

(a) the amplitude and period of oscillations; draw the plot z (¢);

(b) the velocity projection v, as a function of the coordinate z;
draw the plot v, (z).

4.3. A particle performs harmonic oscillations along the z axis
about the equilibrium position z = 0. The oscillation frequency is
® = 4.00 s=1. At a certain moment of time the particle has a coor-
dinate x, = 25.0 cm and its velocity is equal to v,, = 100 cm/s.
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(4.1f)

Find the coordinate z and the velocity v, of the particle t = 2.40 s
after that moment.

4.4. Find the angular frequency and the amplitude of harmonic
oscillations of a particle if at distances z; and z, from the equilib-
rium position its velocity equals v, and v, respectively.

4.5. A point performs harmonic oscillations along a straight line
with a period 7 = 0.60 s and an amplitude ¢ = 10.0 cm. Find the
mean velocity of the point averaged over the time interval during
which it travels a distance a/2, starting from

(a) the extreme position;

(b) the equilibrium position.

4.6. At the moment ¢ = 0 a point starts oscillating along the x
axis according to the law z = « sin ot. Find:

(a) the mean value of its velocity vector projection (v,);

(b) the modulus of the mean velocity vector [(v)] ;

(c) the mean value of the velocity modulus (v) averaged over 3/8
of the period after the start.

4.7. A particle moves along the z axis according to the law z =
= g cos wt. Find the distance that the particle covers during the
time interval from ¢ = 0 to ¢.

4.8. At the moment ¢ = 0 a particle starts moving along the x
axis so that its velocity projection varies as v, = 35 cos st cm/s,
where ¢ is expressed in seconds. Find the distance that this particle
covers during t = 2.80 s after the start.

4,9, A particle performs harmonic oscillations along the x axis
according to the law z == a cos wt. Assuming the probability P of
the particle to fall within an interval from —a to 4-a to be equal to
unity, find how the probability density dP/dz depends on z. Here
dP denotes the probability of the particle falling within an interval
from z to z 4 dx. Plot dP/dz as a function of z.

4.10. Using graphical means, find an amplitude a of oscillations
resulting from the superposition of the following oscillations of the
same direction:

(a) z; = 3.0 cos (wt -+ n/3), z, = 8.0sin (wt 4 n/6);

(b) =, = 3.0 cos wt, z, = 5.0 cos (at 4 n/4), z; = 6.0 sin ot.

4.41. A point participates simultaneously in two harmonic oscil-
lations of the same direction: z, = a cos wf and z, = a cos 2wt.
Find the maximum velocity of the point.

4.12. The superposition of two harmonic oscillations of the same
direction results in the oscillation of a point according to the law
z = a cos 2.1t cos 50.0¢, where t is expressed in seconds. Find the
angular frequencies of the constituent oscillations and the period
with which they beat.

4.13. A point 4 oscillates according to a certain harmonic law in
the reference frame K’ which in its turn performs harmonic oscilla-
tions relative to the reference frame K. Both oscillations occur along
the same direction. When the K’ frame oscillates at the frequency
20 or 24 Hz, the beat frequency of the point 4 in the K frame turns
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out to be squal to v. At what frequency of oscillation of the frame
K’ will the beat frequency of the point A become equal to 2v?

4.14. A point moves in the plane zy according to the law z =
= @ sin w?, y = b cos wt, where a, b, and » are positive constants.
Find:

(a) the trajectory equation y (x) of the point and the direction of
its motion along this trajectory;

(b) the acceleration w of the point as a function of its radius vector
r relative to the origin of coordinates.

4.15. Find the trajectory equation y (z) of a point if it moves ac-
cording to the following laws:

(a) z = a sin t, y = a sin 20t;

(b) z = asin ot, y = a cos 2ut.

Plot these trajectories.

4.16. A particle of mass m is located in a unidimensional potential
field where the potential energy of the particle depends on the coor-
dinate x as U (x) = U, (1 — cos azx); U, and a are constants. Find
the period of small oscillations that the particle performs about the
equilibrium position.

4.17. Solve the foregoing problem if the potential energy has the
form U (z) = a/z® — b/z, where a and b are positive constants.

4.18. Find the period of small oscillations in a vertical plane per-
formed by a ball of mass m = 40 g fixed at the middle of a horizon-
tally stretched string [ = 1.0 m in length. The tension of the string
is assumed to be constant and equal to # = 10 N.

4.19. Determine the period of small oscillations of a mathematical
pendulum, that is a ball suspended by a thread I = 20 cm in length,
if it is located in a liquid whose density is = 3.0 times less than
that of the ball. The resistance of the liquid is to be neglected.

4.20. A ball is suspended by a thread of length [ at the point O on
the wall, forming a small angle o with the vertical (Fig. 4.1). Then

the thread with the ball was deviated through a small angle p (f > «)
and set free. Assuming the collision of the ball against the wall to
be perfectly elastic, find the oscillation period of such a pendulum.
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4.21. A pendulum clock is mounted in an elevator car which starts
going up with a constant acceleration w, with w << g. At a height &
the acceleration of the car reverses, its magnitude remaining constant.
How soon after the start of the motion will the clock show the right
time again?

4.22. Calculate the period of small oscillations of a hydrometer
(Fig. 4.2) which was slightly pushed down in the vertical direction.
The mass of the hydrometer is m = 50 g, the radius of its tube is
r = 3.2 mm, the density of the liquid is p = 1.00 g/cm3. The resis-
tance of the liquid is assumed to be negligible.

4.23. A non-deformed spring whose ends are fixed has a stiffness
®x = 13 N/m. A small body of mass m = 25 g is attached at the point
removed from one of the ends by 1 == 1/3 of the spring’s length. Neg-
lecting the mass of the spring, find the period of small longitudinal
oscillations of the body. The force of gravity is assumed to be absent.

7

/, £1 22

7 i
Fig. 4.3.

4.24, Determine the period of small longitudinal oscillations of
a body with mass m in the system shown in Fig. 4.3. The stifiness
values of the springs are %, and »,. The friction and the masses of
the springs are negligible.

4.25. Find the period of small vertical oscillations of a body with
mass m in the system illustrated in Fig. 4.4. The stiffness values of
the springs are %, and %,, their masses are negligible.

4.26. A small body of mass m is fixed to the middle of a stretched
string of length 2I. In the equilibrium position the string tension is
equal to T, Find the angular frequency of small oscillations of the
body in the transverse direction. The mass of the string is negligible,
the gravitational field is absent.

4]
%
m
Fig. 4.4.

4.27, Determine the period of oscillations of mercury of mass
m = 200 g poured into a bent tube (Fig. 4.5) whose right arm forms
an angle 8 = 30° with the vertical. The cross-sectional area of the
tube is S = 0.50 cm?®. The viscosity of mercury is to be neglected.
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4.28. A uniform rod is placed on two spinning wheels as shown in
Fig. 4.6. The axes of the wheels are separated by a distance I = 20 cm,
the coefficient of friction between the rod and the wheels is £ = 0.18.
Demonstrate that in this case the rod performs harmonic oscilla-
tions. Find the period of these oscillations.

Fig. 4.6.

4.29. Imagine a shaft going all the way through the Earth from
pole to pole along its rotation axis. Assuming the Earth to be a ho-
mogeneous ball and neglecting the air drag, find:

(a) the equation of motion of a body falling down into the shaft;

(b) how long does it take the body to reach the other end of the
shaft;

(c) the velocity of the body at the Earth’s centre.

4.30. Find the period of small oscillations of a mathematical pen-
dulum of length [ if its point of suspension O moves relative to the
Earth’s surface in an arbitrary direction with a constant acceleration
w (Fig. 4.7). Calculate that period if I = 21 cm, w = g/2, and the
angle between the vectors w and g equals f = 120°.

77777077
Fig. 4.7.

Fig. 4.8,

4.31. In the arrangement shown in Fig. 4.8 the sleeve M of mass
m = 0.20 kg is fixed between two identical springs whose combined
stiffness is equal to ® = 20 N/m. The sleeve can slide without fric-
tion over a horizontal bar AB. The arrangement rotates with a con-
stant angular velocity o = 4.4 rad/s about a vertical axis passing
through the middle of the bar. Find the period of small oscillations
of the sleeve. At what values of ® will there be no oscillations of the
sleeve?

4.32. A plank with a bar placed on it performs horizontal harmonic
oscillations with amplitude @ = 10 cm. Find the coefficient of fric-
tion between the bar and the plank if the former starts sliding along
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the plank when the amplitude of oscillation of the plank becomes
less than T = 1.0 s.

4.33. Find the time dependence of the angle of deviation of a
mathematical pendulum 80 e¢m in length if at the initial moment the
pendulum

(a) was deviated through the angle 3.0° and then set free without
push;

(b) was in the equilibrium position and its lower end was imparted
the horizontal velocity 0.22 m/s;

(c) was deviated through the angle 3.0° and its lower end was im-
parted the velocity 0.22 m/s directed toward the equilibrium position.

4.34. A body A of mass m; = 1.00 kg and a body B of mass m, =
= 4.10 kg are interconnected by a spring as shown in Fig. 4.9. The
body A performs free vertical harmonic oscilla-
tions with amplitude a = 1.6 cm and frequency A
o = 25 s—1. Neglecting the mass of the spring, —
find the maximum and minimum values of force
that this system exerts on the bearing surface.

4.35. A plank with a body of mass m placed 5!“ m

on it starts moving straight up according to
the law y = ¢ (1 — cos wt), where y is the
displacement from the initial position, o =
=11 s-1. Find:

(a) the time dependence of the force that the body exerts on the
plank if a = 4.0 cm; plot this dependence;

(b) the minimum amplitude of oscillation of the plank at which
the body starts falling behind the plank;

(c) the amplitude of oscillation of the plank at which the body
springs up to a height » = 50 cm relative to the initial position (at
the moment ¢ = 0).

4.36. A body of mass m was suspended by a non-stretched spring,
and then set free without push. The stifiness of the spring is .
Neglecting the mass of the spring, find:

(a) the law of motion y (), where y is the displacement of the body
from the equilibrium position;

(b) the maximum and minimum tensions of the spring in the pro-
cess of motion.

4.37. A particle of mass m moves due to the force F = — amr,
where a is a positive constant, r is the radius vector of the particle
relative to the origin of coordinates. Find the trajectory of its motion
if at the initial moment r = ryi and the velocity v = v,j, where i
and § are the unit vectors of the z and y axes.

4.38. A body of mass m is suspended from a spring fixed to the
ceiling of an elevator car. The stiffness of the spring is x. At the mo-
ment ¢t = 0 the car starts going up with an acceleration w. Neglecting
the mass of the spring, find the law of motion y (¢) of the body rela-

tive to the elevator car if y (0) = 0 and y (0) = 0. Consider the fol-
lowing two cases:

i

Fig. 4.9.
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(a) w = const;

(b) w = at, where o is a constant.

4.39. A body of mass m = 0.50 kg is suspended from a rubber cord
with elasticity coefficient ¥ = 50 N/m. Find the maximum distance
over which the body can be pulled down for the body’s oscillations
to remain harmonic. What is the energy of oscillation in this case?

4.40. A body of mass m fell from a height % onto the pan of a spring
balance (Fig. 4.10). The masses of the pan and the spring are negligible,
the stiffness of the latter is . Having stuck to the pan, the body starts
performing harmonic oscillations in the vertical direction. Find the
amplitude and the energy of these oscillations.

Fig. 4.10. Fig, 4.11.

4.41, Solve the foregoing problem for the case of the pan having
a mass M. Find the oscillation amplitude in this case.
4.42. A particle of mass m moves in the plane zy due to the force

varying with velocity as F = «a (g}i — zj), where a is a positive con-
stant, i and j are the unit vectors of the x and y axes. At the initial
moment ¢ = 0 the particle was located at the point z = y = 0 and
possessed a velocity v, directed along the unit vector j. Find the law
of motion z (), y (¢) of the particle, and also the equation of its tra-
jectory.

4.43. A pendulum is constructed as a light thin-walled sphere of
radius R filled up with water and suspended at the point O from a
light rigid rod (Fig. 4.11). The distance between the point O and the
centre of the sphere is equal to I. How many times will the small
oscillations of such a pendulum change after the water freezes? The
viscosity of water and the change of its volume on freezing are to
be neglected.

4.44. Find the frequency of small oscillations of a thin uniform
vertical rod of mass m and length [ hinged at the point O (Fig. 4.12).
The combined stiffness of the springs is equal to »x. The mass of the
springs is negligible.

4.45. A uniform rod of mass m = 1.5 kg suspended by two iden-
tical threads =90 cm in length (Fig. 4.13) was turned through a
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small angle about the vertical axis passing through its middle point
C. The threads deviated in the process through an angle & = 5.0°.
Then the rod was released to start performing small oscillations.
Find:

(a) the oscillation period;

(b) the rod’s oscillation energy.

u
0]
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Fig. 4.12. Fig. 4.13. Fig. 4.14.

4.46. An arrangement illustrated in Fig. 4.14 consists of a hori-
zontal uniform disc D of mass m and radius R and a thin rod A0
whose torsional coefficient is equal to k. Find the amplitude and the
energy of small torsional oscillations if at the initial moment the
disc was deviated through an angle @, from the equilibrium position

and then imparted an angular velocity q,.

4.47. A uniform rod of mass m and length [ performs small oscil-
lations about the horizontal axis passing through its upper end. Find
the mean kinetic energy of the rod averaged over one oscillation pe-
riod if at the initial moment it was deflected from the vertical by an

angle 6, and then imparted an angular velocity 0,.

4.48. A physical pendulum is positioned so that its centre of grav-
ity is above the suspension point. From that position the pendulum
started moving toward the stable equilibrium and passed it with an
angular velocity w. Neglecting the friction find the period of small
oscillations of the pendulum.

4.49. A physical pendulum performs small oscillations about the
horizontal axis with frequency w; = 15.0 s=!. When a small body
of mass m = 50 g is fixed to the pendulum at a distance I = 20 cm
below the axis, the oscillation frequency becomes equal to w, =
= 10.0 s=1, Find the moment of inertia of the pendulum relative
to the oscillation axis. -

4.50, Two physical pendulums perform small oscillations about
the same horizontal axis with frequencies w, and w,. Their moments
of inertia relative to the given axis are equal to I, and I, respectively.
In a state of stable equilibrium the pendulums were fastened rigidly
together. What will be the frequency of small oscillations of the com-
pound pendulum?

4.51. A uniform rod of length ! performs small oscillations about
the horizontal axis OO’ perpendicular to the rod and passing through
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one of its points. Find the distance between the centre of inertia of
the rod and the axis OO’ at which the oscillation period is the short-
est. What is it equal to?

4.52. A thin uniform plate shaped as an equilateral triangle
with a height & performs small oscillations about the horizontal
axis coinciding with one of its sides. Find the oscillation period and
the reduced length of the given pendulum.

4.53. A smooth horizontal disc rotates about the vertical axis O
(Fig. 4.15) with a constant angular velocity w. A thin uniformrod AB
of length ! performs small oscillations about the vertical axis 4 fixed
to the disc at a distance a from the axis of the disc. Find the frequency
wp of these oscillations.

- Fig. 4.15. Fig. 4.16.

4.54. Find the frequency of small oscillations of the arrangement
illustrated in Fig. 4.16. The radius of the pulley is R, its moment of
inertia relative to the rotation axis is I, the mass of the body is m,
and the spring stiffness is ». The mass of the thread and the spring
is negligible, the thread does not slide over the pulley, there is no
friction in the axis of the pulley.

4.55. A uniform cylindrical pulley of mass M and radius R can
freely rotate about the horizontal axis O (Fig. 4.17). The free end of

All

Fig. 4.17.

Fig. 4.18.

a thread tightly wound on the pulley carries a deadweight 4. At
a certain angle « it counterbalances a point mass m fixed at the rim
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of the pulley. Find the frequency of small oscillations of the arrange-
ment.

4.56. A solid uniform cylinder of radius r rolls without sliding
along the inside surface of a cylinder of radius R, performing small
oscillations. Find their period.

4.57. A solid uniform cylinder of mass m performs small oscilla-
tions due to the action of two springs whose combined stiffness is
equal to x (Fig. 4.18). Find the period of these oscillations in the
absence of sliding.

4.58. Two cubes with masses m, and m, were interconnected by a
weightless spring of stiffness » and placed on a smooth horizontal
surface. Then the cubes were drawn closer to each other and released
simultaneously. Find the natural oscillation frequency of the
system.

4.59. Two balls with masses m; = 1.0 kg and m, = 2.0 kg are
slipped on a thin smooth horizontal rod (Fig. 4.19). The balls are

interconnected by a light spring of stiffness » = 24 N/m. The left-
hand ball is imparted the initial velocity v, = 12 cm/s. Find:

(a) the oscillation frequency of the system in the process of mo-
tion;

(b) the energy and the amplitude of oscillations.

4.60. Find the period of small torsional oscillations of a system
consisting of two discs slipped on a thin rod with torsional coefficient
k. The moments of inertia of the discs relative to the rod’s axis are
equal to I, and I,.

4.61. A mock-up of a CO, molecule consists of three balls intercon-
nected by identical light springs and placed along a straight line in
the state of equilibrium. Such a system can freely perform oscilla-
tions of two types, as shown by the arrows in Fig. 4.20. Knowing the
masses of the atoms, find the ratio of frequencies of these oscilla-
tions.

Fig. 4.21.

Fig. 4.20.

4.62. In a cylinder filled up with ideal gas and closed from both
ends there is a piston of mass m and cross-sectional area § (Fig. 4.21).

175



In equilibrium the piston divides the cylinder into two equal parts,
sach with volume V,. The gas pressure is p,. The piston was.sllghl!;y
displaced from the equilibrium position and released. Find its oscil-
lation frequency, assuming the processes in the gas to be adiabatic
and the friction negligible. '

4,63. A small ball of mass m = 21 g suspended by an insulating
thread at a height 2 = 12 c¢cm from a large horizontal conducting
plane performs small oscillations (Fig. 4.22). After a charge g had-been
imparted to the ball, the oscillation period changed v = 2.0 times.
Find q.

VI7744
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Fig. 4.22. Fig. 4.23.

4.64. A small magnetic needle performs small oscillations about an
axis perpendicular to the magnetic induction vector.-On changing
the magnetic induction the needle’s oscillation period decreased
M = 5.0 times. How much and in what way was the magnetic induc-
tion changed? The oscillation damping is assumed to be negligible.

4.65. A loop (Fig. 4.23) is formed by two parallel conductors con-
nected by a solenoid with inductance L and a conducting rod of mass
m which can freely (without friction) slide over the conductors. The
conductors are located in a horizontal plane in a uniform vertical
magnetic field with induction B. The distance between the cpqdpctors
is equal to I. At the moment ¢ = O the rod is imparted an initial ve-
locity v, directed to the right. Find the law of its motion z (¢) if
the electric resistance of the loop is negligible. .

4.66. A coil of inductance L connects the upper ends of two vertic-
al copper bars separated by a distance I. A horizontal conducting con-
nector of mass m starts falling with zero initial velocity along the
bars without losing contact with them. The whole system is located
in a uniform magnetic field with induction B perpendicular to the
plane of the bars. Find the law of motion z (¢) of the connector.

4.67. A point performs damped oscillations according to the law
z = a,e P sin ot. Find: .

(a) the oscillation amplitude and the velocity of the point at the
moment ¢t = 0;

(b) the moments of time at which the point reaches the extreme
positions. ]

4.68. A body performs torsional oscillations according to the law
¢ = @ee Bt cos wt. Find:
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(a) the angular velocity cp and the angular acceleration cp of the
body at the moment ¢ = 0;

(b) the moments of time at which the angular velocity becomes
maximum.

4.69. A point performs damped oscillations with frequency o
and damping coefficient B according to the law (4.1b). Find the ini-
tial amplitude a, and the initial phase « if at the moment ¢t — 0 the
displacement of the point and its velocity projection are equal to

(a) z (0) = 0 and v, (0) = z,; ‘

(b) x (0) = z, and v, (0) = 0.

4.70. A point performs damped oscillations with frequency o =
= 25s~1. Find the damping coefficient p if at the initial moment the
velocity of the point is equal to zero and its displacement from the
equilibrium position is 1 = 1.020 times less than the amplitude at
that moment.

4.71. A point performs damped oscillations with frequency o
and damping coefficient f. Find the velocity amplitude of the point
as a function of time ¢ if at the moment ¢t = 0

(a) its displacement amplitude is equal to a,;

(b) the displacement of the point z (0) = 0 and its velocity pro-
jection v, (0).= z,.

4.72. There are two damped oscillations with the following periods
T and damping coefficients p: T, = 0.10 ms, f, = 100 s-! and
T, = 10 ms, B, = 10 s~. Which of them decays faster?

4.73. A mathematical pendulum oscillates in a medium for which
the logarithmic damping decrement is equal to A, = 1.50. What
will be the logarithmic damping decrement if the resistance of the
medium increases n = 2.00 times? How many times has the resis-
tance of the medium to be increased for the oscillations to become
impossible?

4.74. A deadweight suspended from a weightless spring extends it
by Az = 9.8 cm. What will be the oscillation period of the dead-
weight when it is pushed slightly in the vertical direction? Tbe loga-
rithmic damping decrement is equal to A = 3.1.

4.75. Find the quality factor of the oscillator whose displacement
amplitude decreases n = 2.0 times every n = 110 oscillations.

4.76. A particle was displaced from the equilibrium position by
a distance I = 1.0 cm and then left alone. What is the distance that
the particle covers in the process of oscillations till the complete
stop, if the logarithmic damping decrement is equal to A = 0.020?

4.77. Find the quality factor of a mathematical pendulum ! =
= 50 cm long if during the time interval v = 5.2 min its total me-
chanical energy decreases n = 4.0-10* times.

4.78. A uniform disc of radius R = 13 cm can rotate about a hori-
zontal axis perpendicular to its plane and passing through the edge
of the disc. Find the period of small oscillations of that disc if the
logarithmic damping decrement is equal to A = 1.00.
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4.79. A thin uniform disc of mass m and radius R suspended by
an elastic thread in the horizontal plane performs torsignal.oscll—
lations in a liquid. The moment of elastic forces emerging in the
thread is equal to N = o, where @ is a constant and @ is the angle
of rotation from the equilibrium position. The resistance force acting
on a unit area of the disc is equal to F; = mp, where 7 is a constant
and v is the velocity of the given element of the disc relative to the
liquid. Find the frequency of small oscillation.

4.80. A disc A of radius R suspended by an elastic thread between
two stationary planes (Fig. 4.24) performs torsiongl oscillgtlons
about its axis O0’. The moment of inertia of the disc relative to
that axis is equal to I, the clearance between the disc and each of
the planes is equal to &, with & < R. Find the viscosity of the gas
surrounding the disc 4 if the oscillation period of the disc equals T
and the logarithmic damping decrement, A.

s,
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Fig. 4.24. Fig. 4.25.

4.81. A conductor in the shape of a square frame with side a sus-
pended by an elastic thread is located in a uniform horizontal magne-
tic field with induction B. In equilibrium the plane of the frame
is parallel to the vector B (Fig. 4.25). Having been displaced from
the equilibrium position, the frame performs small oscillations about
a vertical axis passing through its centre. The moment 9f inertia of
the frame relative to that axis is equal to I, its electric resistance is R.
Neglecting the inductance of the frame, find the time interval after
which the amplitude of the frame’s deviation angle decreases e—fo.ld.

4.82. A bar of mass m = 0.50 kg lying on a horiAzontal plane with
a friction coefficient & = 0.10 is attached to the wall by means qf
a horizontal non-deformed spring. The stifiness of the spring is
equal to x = 2.45 N/cm, its mass is negligible. The barwas dlsplacefl S0
that the spring was stretched by z, = 3.0 cm, and then released. Find:

(a) the period of oscillation of the bar; L

(b) the total number of oscillations that the bar performs until it
stops completely. ) )

4.83. A ball of mass m can perform undamped harmonic oscilla-
tions about the point z = 0 with natural frequency ®,. At the mo-
ment ¢ = 0, when the ball was in equilibrium, a force F, = Fgq cos ot
coinciding with the z axis was applied to it. Find the law of forced
oscillation z (f) for that ball.
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4.84. A particle of mass m can perform undamped harmonic oscil-
lations due to an electric force with coefficient k. When the particle
was in equilibrium, a permanent force ¥ was applied to it for 1 sec-
onds. Find the oscillation amplitude that the particle acquired
after the action of the force ceased. Draw the approximate plot
z (t) of oscillations. Investigate possible cases.

4.85. A ball of mass m when suspended by a spring stretches the
latter by Al. Due to external vertical force varying according to a
harmonic law with amplitude F, the ball performs forced oscilla-
tions. The logarithmic damping decrement is equal to A. Neglecting
the mass of the spring, find the angular frequency of the external
force at which the displacement amplitude of the ball is maximum.
What is the magnitude of that amplitude?

4.86. The forced harmonic oscillations have equal displacement
amplitudes at frequencies w; = 400 s-!' and w, = 600 s—! .
Find the resonance frequency at which the displacement amplitude
is maximum.

4.87. The velocity amplitude of a particle is equal to half the maxi-
mum value at the frequencies @; and w, of external harmonic force.
Find:

(a) the frequency corresponding to the velocity resonance;

(b) the damping coefficient f and the damped oscillation frequency
® of the particle.

4.88. A certain resonance curve describes a mechanical oscillat-
ing system with logarithmic damping decrement A = 1.60. For
this curve find the ratio of the maximum displacement amplitude
to the displacement amplitude at a very low frequency.

4.89. Due to the external vertical force F, = F, cos ot a body
suspended by a spring performs forced steady-state oscillations accord-
ing to the law z = a cos (ot — ¢). Find the work performed by
the force F during one oscillation period.

4.90. A ball of mass m = 50 g is suspended by a weightless spring
with stiffness x = 20.0 N/m. Due to external vertical harmonic
force with frequency o = 25.0 s-! the ball performs steady-state
oscillations with amplitude a = 1.3 cm. In this case the displace-

ment of the ball lags in phase behind the external force by ¢ =%n.

Find:

(a) the quality factor of the given oscillator;

(b) the work performed by the external force during one oscillation
period.

4.91. A ball of mass m suspended by a weightless spring can per-
form vertical oscillations with damping coefficient p. The natural
oscillation frequency is equal to w,. Due to the external vertical
force varying as F = F, cos ot the ball performs steady-state har-
monic oscillations. Find:

(a) the mean power (P), developed by the force F, averaged over
one oscillation period;
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(b) the frequency o of the force F at which (P) is maximum; what
is (PYmax equal to?

4.92. An external harmonic force ¥ whose frequency can be varied,
with amplitude maintained constant, acts in a vertical direction on
a ball suspended by a weightless spring. The damping coefficient is n
times less than the natural oscillation frequency w, of the ball.
How much, in per cent, does the mean power (P) developed by the
force F at the frequency of displacement resonance differ from the
maximum mean power {(P)m,..’ Averaging is performed over one
oscillation period.

4.93. A uniform horizontal disc fixed at its centre to an elastic
vertical rod performs forced torsional oscillations due to the moment
of forces N, = N, cos wt. The oscillations obey the law ¢ =
= P, cos (ot — ). Find:

(a) the work performed by friction forces acting on the disc during
one oscillation period;

(b) the quality factor of the given oscillator if the moment of
inertia of the disc relative to the axis is equal to I.

4,2. ELECTRIC OSCILLATIONS
e Damped oscillation in a circuit

q=qme P cos (0t +a),
where

o=V oj—p7 , @

e Logarithmic damping decrement A and quality factor Q of a circuit are
defined by Eqgs. (4.1d). When dawmping is low:

A=nR ]/—T- 0=—11T ‘/% (4.2b)

o Steady-state forced oscillation in a circuit with a voltage V = V,, cos wt
connected in series:

B=—+. (4.2a)

I

I = I, cos (0t — @), (4.2¢)
where
CVmi(e-g). [T K
R+ (oL -——C—) ,
| (4.2d) P  Axis
B mL_ECT InR of current
tan p=—p—. Infut
Fig. 4.26.
The corresponding vector diagram for voltages is shown in Fig. 4.26.
o Power generated in an ac circuit:
P == VI cos o, (4.2e)
where V and I are the effective values of voltage and current:
V=V, V2 I=I,VZ (4.2f)
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4.94. Due to a certain cause the free electrons in a plane copper
plate shifted over a small distance z at right angles to its surface.
As a result, a surface charge and a corresponding restoring force
emerged, giving rise to so-called plasma oscillations. Find the
angular frequency of these oscillations if the free electron concent-
ration in copper is n = 0.85-10% m™.

4.95. An oscillating circuit consisting of a capacitor with capac-
itance C and a coil of inductance L maintains free undamped oscil-
lations with voltage amplitude across the capacitor equal to V.
For an arbitrary moment of time find the relation between the cur-
rent 7 in the circuit and the voltage V across the capacitor. Solve
this problem using Ohm’s law and then the energy conservation law.

4.96. An oscillating circuit consists of a capacitor with capaci-
tance C, a coil of inductance L with negligible resistance, and a
switch. With the switch disconnected, the capacitor was charged to
a voltage V,, and then at the moment ¢ = 0 the switch was closed.
Find:

(a) the current I (t) in the circuit as a function of time;

(b) the emf of self-inductance in the coil at the moments when the
electric energy of the capacitor is equal to that of the current in the
coil.

4.97. In an oscillating circuit consisting of a parallel-plate capa-
citor and an inductance coil with negligible active resistance the
oscillations with energy W are sustained. The capacitor plates were
slowly drawn apart to increase the oscillation frequency m-fold.
What work was done in the process?

4.98. In an oscillating circuit shown in Fig. 4.27 the coil inductance
is equal to L = 2.5 mH and the capacitor have capacitances Cy =
= 2.0 uF and C, = 3.0 uF. The capacitors were charged to a voltage
V = 180V, and then the switch Sw was closed. Find:

(a) the natural oscillation frequency;

(b) the peak value of the current flowing through the coil.

Sw

Fig. 4.27. Fig. 4.28.

4.99. An electric circuit shown in Fig. 4.28 has a negligibly small
active resistance. The left-hand capacitor was charged to a voltage V4
and then at the moment ¢ = O the switch Sw was closed. Find the
time dependence of the voltages in left and right capacitors.

4.100. An oscillating circuit consists of an inductance coil L and
a capacitor with capacitance C. The resistance of the coil and the lead
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wires is negligible. The coil is placed in a permanent magnetic field
so that the total flux passing through all the turns of the coil is equal
to @. At the moment ¢ = 0 the magnetic field was switched off.
Assuming the switching off time to be negligible compared to the
natural oscillation period of the circuit, find the circuit current as
a function of time ¢.

4.101. The free damped oscillations are maintained in a circuit,
such that the voltage across the capacitor varies as V = V,,e™8 cos wt.
Find the moments of time when the modulus of the voltage across
the capacitor reaches

(a) peak values;

(b) maximum (extremum) values.

4.102. A certain oscillating circuit consists of a capacitor with
capacitance C, a coil with inductance L and active resistance R,
and a switch. When the switch was disconnected, the capacitor was
charged; then the switch was closed and oscillations set in. Find the
ratio of the voltage across the capacitor to its peak value at the
moment immediately after closing the switch.

4.403. A circuit with capacitance C and inductance L generates
free damped oscillations with current varying with time as I =
= I e 8" sin wt. Find the voltage across the capacitor as a function
of time, and in particular, at the moment ¢ = 0.

4.104. An oscillating circuit consists of a capacitor with capac-
itance C = 4.0 pF and a coil with inductance L = 2.0 mH and
active resistance R = 10 Q. Find the ratio of the energy of the coil’s
magnetic field to that of the capacitor’s electric field at the moment
when the current has the maximum value.

4.105. An oscillating circuit consists of two coils connected in
series whose inductances are L, and L,, active resistances are R,
and R,, and mutual inductance is negligible. These coils are to be
replaced by one, keeping the frequency and the quality factor of
the circuit constant. Find the inductance and the active resistance of
such a coil.

4.106. How soon does the current amplitude in an oscillating
circuit with quality factor Q = 5000 decrease = 2.0 times if the
oscillation frequency is v = 2.2 MHz? ‘

4.107. An oscillating circuit consists of capacitance C = 10 uF,

inductance L = 25 mH, and active resistance R 1.0 Q. How many
oscillation periods does it take for the current
amplitude to decrease e-fold? Sw R

4.108. How much (in per cent) does the free
oscillation frequency o of a circuit with qua- 3 ¢ L
lity factor Q = 5.0 differ from the natural L T
oscillation frequency o, of that circuit?

4.109. In a circuit shown in Fig. 4.29 the Fig. 4.29,
battery emf is equal to & = 2.0 V, its inter-
nal resistance is r = 9.0 Q, the capacitance of the capacitor is
C = 10 pF, the coil inductance is L = 100 mH, and the resistance
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is R = 1.0 Q. At a certain moment the switch Sw was disconnected.
Find the energy of oscillations in the circuit

(a) immediately after the switch was disconnected;

(b) t = 0.30 s after thé switch was disconnected.

4.110. Damped oscillations are induced in a circuit whose quality
factor is Q@ = 50 and natural oscillation frequency is v = 5.5 kHz.
How soon will the energy stored in the circuit decrease n = 2.0
times?

4.111. An oscillating circuit incorporates a leaking capacitor.
Its capacitance is equal to C and active resistance to R. The coil
inductance is L. The resistance of the coil and the wires is negligible.
Find:

(a) the damped oscillation frequency of such a circuit;

(b) its quality factor.

4.112. Find the quality factor of a circuit with capacitance C =
= 2.0 pF and inductance L = 5.0 mH if the maintenance of undamp-
ed oscillations in the circuit with the voltage amplitude across the
capacitor being equal to V,, = 1.0V requires a power (P) =
= 0.10 mW. The damping of oscillations is sufficiently low.

4.113. What mean power should be fed to an oscillating circuit
with active resistance R == 0.45 Q to maintain undamped harmonic
oscillations with current amplitude 7, = 30 mA?

4.114. An oscillating circuit consists of a capacitor with capac-
itance ¢ = 1.2 nF and a coil with inductance L = 6.0 pH and
active resistance R = 0.50 Q. What mean power should be fed to
the circuit to maintain undamped harmonic oscillations with vol-
tage amplitude across the capacitor being equal to V, = 10V?

4.115. Find the damped oscillation frequency of the circuit shown
in Fig. 4.30. The capacitance C, inductance L, and active resistance R
are supposed to be known. Find how must C, L, and R be interrelat-
ed to make oscillations possible.

L R o= /?5% %C ;ﬁj %[; jﬁ,

@ )]
Fig. 4.30. Fig. 4.31.

4.116. There are two oscillating circuits (Fig. 4.31) with capaci-
tors of equal capacitances. How must inductances and active resis-
tances of the coils be interrelated for the frequencies and damping
of free oscillations in both circuits to be equal? The mutual induc-
tance of coils in the left circuit is negligible.

4.117. A circuit consists of a capacitor with capacitance C and
a coil of inductance L connected in series, as well as a switch and a
resistance equal to the critical value for this circuit. With the switch
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disconnected, the capacitor was charged to a voltage V,, and at the
moment ¢ = 0 the switch was closed. Find the current [ in the circuit
as a function of time ¢. What is I,,,, equal to?

4.118. A coil with active resistance R and inductance L was con-
nected at the moment ¢ = 0 to a source of voltage V = V,, cos ot.
Find the current in the coil as a function of time ¢.

4.119. A circuit consisting of a capacitor with capacitance C and
a resistance R connected in series was connected at the moment
t = 0 to a source of ac voltage V = V,, cos wt. Find the current in
the circuit as a function of time ¢.

4.120. A long one-layer solenoid tightly wound of wire with re-
sistivity p has n turns per unit length. The thickness of the wire
_insulation is negligible. The cross-sectional radius of the solenoid
is equal to a. Find the phase difference between current and alternat-
ing voltage fed to the solenoid with frequency v.

4.121. A circuit consisting of a capacitor and an active resistance
R = 110 Q connected in series is fed an alternating voltage with
amplitude V,, = 110 V. In this case the amplitude of steady-state
current is equal to I,, = 0.50 A. Find the phase difference between
the current and the voltage fed.

4.122. Fig. 4.32 illustrates the simplest ripple filter. A voltage
V="V, (1 + cos ot) is fed to the left input. Find:

(a) the output voltage V' (t);

(b) the magnitude of the product RC at which the output amplitude
of alternating voltage component is m — 7.0 times less than the
direct voltage component, if © = 314 s-1,

R
Ry LR 4 L,R
174 I [ ‘ , l W<w,
g 4 Vac I/acu
(@) (3)
Fig. 4.32. Fig. 4.33.

4.123. Draw the approximate voltage vector diagrams in the
electric circuits shown in Fig. 4.33 a, b. The external voltage V
is assumed to be alternating harmonically with frequency w.

4.124. A series circuit consisting of a capacitor with capacitance
C = 22 uF and a coil with active resistance R = 20 Q and induc-
tance L = 0.35 H is connected to a source of alternating voltage
with amplitude V,, = 180 V and frequency o = 314 s-!, Find:

(a) the current amplitude in the circuit;

(b) the phase difference between the current and the external vol-
tage;

(c) the amplitudes of voltage across the capacitor and the coil.

4.125. A series circuit consisting of a capacitor with capacitance C,
a resistance R, and a coil with inductance L and negligible active
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resistance is connected to an oscillator whose frequency can be vari-
ed without changing the voltage amplitude. Find the frequency
at which the voltage amplitude is maximum

(a) across the capacitor;

(b) across the coil.

4.126. An alternating voltage with frequency o = 314 s-!
and amplitude V, = 180V is fed to a series circuit consisting of
a capacitor and a coil with active resistance R = 40 Q and induc-
tance L = 0.36 H. At what value of the capacitor’s capacitance will
the voltage amplitude across the coil be maximum? What is this
amplitude equal to? What is the corresponding voltage amplitude
across the condenser?

4.127. A capacitor with capacitance C whose interelectrode space
is filled up with poorly conducting medium with active resistance R
is connected to a source of alternating voltage V = V,, cos of.
Find the time dependence of the steady-state current flowing in lead
wires. The resistance of the wires is to be neglected.

4.128. An oscillating circuit consists of a capacitor of capacitance C
and a solenoid with inductance L,. The solenoid is inductively con-
nected with a short-circuited coil having an inductance L, and a negli-
gible active resistance. Their mutual inductance coefficient is equal
to L,,. Find the natural frequency of the given oscillating cir-
cuit.

4,129. Find the quality factor of an oscillating circuit connected
in series to a source of alternating emf if at resonance the voltage across
the capacitor is n times that of the source.

4.130. An oscillating circuit consisting of a coil and a capacitor
connected in series is fed an’ alternating emf, with coil inductance
being chosen to provide the maximum current in the circuit. Find the
quality factor of the system, provided an n-fold increase of induc-
tance results in an n-fold decrease of the current in the circuit.

4.131. A series circuit consisting of a capacitor and a coil with
active resistance is connected to a source of harmonic voltage whose
frequency can be varied, keeping the voltage amplitude constant.
At frequencies o, and o, the current amplitudes are n times less
than the resonance amplitude. Find:

(a) the resonance frequency;

(b) the quality factor of the circuit.

4.132. Demonstrate that at low damping the quality factor Q
of a circuit maintaining forced oscillations is approximately equal
to w,/Aw, where w, is the natural oscillation frequency, Aw is the
width of the resonance curve I (o) at the “height” which is }/ 2 times
less than the resonance current amplitude.

4.133. A circuit consisting of a capacitor and a coil connected in
series is fed two alternating voltages of equal amplitudes but diffe-
rent frequencies. The frequency of one voltage is equal to the natural
oscillation frequency (w,) of the circuit, the frequency of the other
voltage is m times higher. Find the ratio of the current amplitudes
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({,/T) generated by the two voltages if the quality factor of the system
is equal to Q. Calculate this ratio for Q = 10 and 100, if n = 1.10.

4.134. It takes ¢, hours for a direct current I, to charge a storage
battery. How long will it take to charge such a battery from the
mains using a half-wave rectifier, if the effective current value is
also equal to I,?

4.135. Find the effective value of current if its mean value is I,
and its time dependence is

(a) shown in Fig. 4.34;

(b) I ~ |sin ot |.

Fig. 4.34.

4.136. A solenoid with inductance L = 7 mH and active resistance
R = 44 Q is first connected to a source of direct voltage V, and then
to a source of sinusoidal voltage with effective value V = V. At
what frequency of the oscillator will the power consumed by the
solenoid be n = 5.0 times less than in the former case?

4.137. A coil with inductive resistance X; = 30 Q and impedance
Z = 50 Q is connected to the mains with effective voltage value
V = 100 V. Find the phase difference between the current and the
voltage, as well as the heat power generated in the coil.

4.138. A coil with inductance L = 0.70 H and active resistance
r = 20 Q is connected in series with an inductance-free resistance R.
An alternating voltage with effective value V = 220 V and frequency
® = 314 s—! is applied across the terminals of this circuit. At what
value of the resistance R will the maximum heat power be generated
in the circuit? What is it equal to?

4.139. A circuit consisting of a capacitor and a coil in series is
connected to the mains. Varying the capacitance of the capacitor,
the heat power generated in the coil was increasedn = 1.7 times.
How much (in per cent) was the value of cos ¢ changed in the process?

4.140. A source of sinusoidal emf with constant voltage is con-
nected in series with an oscillating circuit with quality factor Q =
= 100. At a certain frequency of the external voltage the heat power
generated in the circuit reaches the maximum value. How much
(in per cent) should this frequency be shifted to decrease the power
generated n = 2.0 times?

4.141. A series circuit consisting of an inductance-free resistance
R = 0.16 kQ and a coil with active resistance is corinected to the
mains with effective voltage V = 220 V. Find the heat power gene-
rated in the coil if the effective voltage values across the resistance R
and the coil are equal to ¥V, = 80V and V, = 180 V respectively.
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4.142. A coil and an inductance-free resistance R = 25 Q are
connected in parallel to the ac mains. Find the heat power generated
in the coil provided a current / = 0.90 A is drawn from the mains.
The coil and the resistance R carry currents [; = 0.50 A and I, =
= 0.60 A respectively. .

4.143. An alternating current of frequency o = 314 s~! is fed
to a circuit consisting of a capacitor of capacitance C = 73 pF and
an active resistance B = 100 Q connected in parallel. Find the impe-
dance of the circuit. .

4.144. Draw the approximate vector diagrams of currents inthe
circuits shown in Fig. 4.35. The voltage applied across the points A
and B is assumed to be sinusoidal; the parameters of each circuit are
so chosen that the total current I, lags in phase behind the external

voltage by an angle .

R I R

3
A 8 A 8 A 8
o o o— -0

Lr LR L

3
(a) (6) (c)
Fig. 4.35.

4.145. A capacitor with capacitance C = 1.0 uF and a coil with
active resistance B = 0.10 Q and inductance L = 1.0 mH are con-
nected in parallel to a source of sinusoidal voltage V = 31 V. Find:

(a) the frequency o at which the resonance sets in;

(b) the effective value of the fed current in resonance, as well as
the corresponding currents flowing through the coil and through the
capacitor. L ) )

4.146. A capacitor with capacitance C and a coil with active resis-
tance R and inductance L are connected in parallel to a source of
sinusoidal voltage of frequency . Find the phase difference between
the current fed to the circuit and the source voltage.

4.147. A circuit consists of a capacitor with capacitance C and
a coil with active resistance R and inductance L connected in pax:al-
lel. Find the impedance of the circuit at frequency @ of alternating
voltage.

4.1%8. A ring of thin wire with active resistance R and inductance L
rotates with constant angular velocity @ in the external uniform
magnetic field perpendicular to the rotation axis. In the process, the
flux of magnetic induction of external field across the ring varies with
time as @ = @, cos wf. Demonstrate that . .

(a) the inductive current in the ring varies with 'flme as [ =
= I, sin (of — @), where I, = 0@/} R* + o*L* with tan ¢ =
= oL/R;

(b) the mean mechanical power developed by extern2a1 2forces2 to
maintain rotation is defined by the formula P = !/,0*®iR/(R* +
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~ 4.149. A wooden core (Fig. 4.36) supports two coils: coil 7 with
inductance L, and short-circuited coil 2 with active resistance R
and inductance L,. The mutual inductance of the coils depends on

z
7 4

IGCO

Fig. 4.36.

the distance z between them according to the law L,, (z). Find the
mean (averaged over time) value of the interaction force between
the coils when coil 7 carries an alternating current I, = I, cos ot.

4.3. ELASTIC WAVES., ACOUSTICS

e Equations of plane and spherical waves:
t=a cos (0t—kz), §=% cos (ot— kr). (4.38)

In the case of a homogeneous absorbing medium the factors e-¥* and e-V" res-
pectively appear in the formulas, where y is the wave damping coefficient.

e Wave equation:
9% | 9% | ot 1 9%
0x® ' Gy® ' 82 T u® o - (4.3b)
e Phase velocity of longitudinal waves in an elastic medium (v“) and trans-
verse waves in a string (UJ.):

W= VE/—pv vy, = lev (4.3c)

where E is Young’s modulus, p is the density of the medium, T is the tension of
the string, p, is its linear density.
e Volume density of energy of an elastic wave:

w = palw? sin? (0t — kz), (W)= Y,pa2w?. (4.3d)
o Energy flow density, or the Umov vector for a travelling wave:
i=wv, § = Ypataelv. ‘ (4.3e)
e Standing wave equation:
£ = a cos kz-cos wt. (4.3f)
e Acoustical Doppler effect:
v="yp ——":r_-—”v"s”— . (4.3g)

e Loudness level (in bels):

L = log (I/1,). (4.3h)

_ o Relation between the intensity I of a sound wave and the pressure oscil-
lation amplitude (Ap),,:

I'=(Ap)Z,/2pv. (4.31)
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4.150. How long will it take sound waves to travel the distance {
between the points A and B if the air temperature between them
varies linearly from T, to T,? The velocity of sound propagation in

air is equal to v = a}/ T, where o is a constant.

4.151. A plane harmonic wave with frequency o propagates at a
velocity v in a direction forming angles a, B, y with the z, y, z axes.
Find the phase difference between the oscillations at the points of
medium with coordinates x,, y;, 3, and z,, y,, 2,.

4.152. A plane wave of frequency w propagates so that a certain
phase of oscillation moves along the z, y, z axes with velocities v,
U,, Ug Fespectively. Find the wave vector k, assuming the unit vectors
ey, €y, e, of the coordinate axes to be assigned.

4.153. A plane elastic wave § = a cos (ot — kx) propagates in
a medium K. Find the equation of this wave in a reference frame K’
moving in the positive direction of the x axis with a constant ve-
locity V relative to the medium K. Investigate the expression ob-
tained.

4.154. Demonstrate that any differentiable function f (tf + az),
where o is a constant, provides a solution of wave equation. What is
the physical meaning of the constant «?

4.155. The equation of a travelling plane sound wave has the form
E = 60 cos (1800t — 5.3x), where £ is expressed in micrometres, ¢
in seconds, and z in metres. Find:

(a) the ratio of the displacement amplitude, with which the par-
ticles of medium oscillate, to the wavelength;

(b) the velocity oscillation amplitude of particles of the medium
and its ratio to the wave propagation velocity;

(c) the oscillation amplitude of relative deformation of the medium
and its relation to the velocity oscillation amplitude of particles of
the medium.

4.156. A plane wave § = a cos (ot — kx) propagates in a homo-
geneous elastic medium. For the moment ¢ = 0 draw

(a) the plots of &, 9E/dt, and 9E/9z vs x;

(b) the velocity direction of the particles of the medium at the
points where § = 0, for the cases of longitudinal and transverse waves;

(c) the approximate plot of density distribution p (z) of the medium
for the case of longitudinal waves.

4.157. A plane elastic wave £ = ae-¥* cos (wt — kz), where a, v,
o, and k are constants, propagates in a homogeneous medium. Find
the phase difference between the oscillations at the points where the
particles’ displacement amplitudes differ by n = 1.0%, if y =
= 0.42 m-' and the wavelength is A = 50 cm.

4.158. Find the radius vector defining the position of a point source
of spherical waves if that source is known to be located on the straight
line between the points with radius vectors r; and r, at which the
oscillation amplitudes of particles of the medium are equal to g,
and a,. The damping of the wave is negligible, the medium is homo-
geneous.
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4.159. A point isotropic source generates sound oscillations with
frequency v = 1.45 kHz. At a distance r, = 5.0 m from the source
the displacement amplitude of particles of the medium is equal to
a, = 50 pm, and at the point A located at a distance r = 10.0 m
from the source the displacement amplitude is n = 3.0 times less
than a,. Find:

(a) the damping coefficient y of the wave;

(b) the velocity oscillation amplitude of particles of the medium
at the point A.

4.160. Two plane waves propagate in a homogeneous elastic me-
dium, one along the z axis and the other along the y axis: §;, =
= a cos (ot — kz), &, = a cos (ot — ky). Find the wave motion
pattern of particles in the plane zy if both waves

(a) are transverse and their oscillation directions coincide;

(b) are longitudinal.

4.161. A plane undamped harmonic wave propagates in a medium.
Find the mean space density of the total oscillation energy (w),
if at any point of the medium the space density of energy becomes
equal to w, one-sixth of an oscillation period after passing the dis-
placement maximum.

4.162. A point isotropic sound source is located on the perpendicu-
lar to the plane of a ring drawn through the centre O of the ring.
The distance between the point O and the source is I = 1.00 m, the
radius of the ring is R = 0.50 m. Find the mean energy flow across
the area enclosed by the ring if at the point O the intensity of sound
is equal to I, = 30 uW/m?. The damping of the waves is negligible.

4.163. A point isotropic source with sonic power P = 0.10 W is
located at the centre of a round hollow cylinder with radius R =
= 1.0 m and height A = 2.0 m. Assuming the sound to be completely
absorbed by the walls of the cylinder, find the mean energy flow
reaching the lateral surface of the cylinder.

4.164. The equation of a plane standing wave in a homogeneous
elastic medium has the form & = a cos kz-cos wt. Plot:

(a) € and 9%/dx as functions of x at the momentst = O and ¢ = T/2,
where T is the oscillation period;

(b) the distribution of density p (z) of the medium at the moments
t =0 and ¢t = T/2 in the case of longitudinal oscillations;

(c) the velocity distribution of particles of the medium at the mo-
ment { = T/4; indicate the directions of velocities at the antinodes,
both for longitudinal and transverse oscillations.

4.165. A longitudinal standing wave £ = a cos kx-cos wt is main-
tained in a homogeneous medium of density p. Find the expressions
for the space density of

(a) potential energy wy (z, t);

(b) kinetic energy wy (z, t).

Plot the space density distribution of the total energy w in the space
between the displacement nodes at the moments ¢t = 0 and ¢ = T/4,
where T is the oscillation period.
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4.166. A string 120 cm in length sustains a standing wave, with
the points of the string at which the displacement amplitude is equal
to 3.5 mm being separated by 15.0 cm. Find the maximum displace-
ment amplitude. To which overtone do these oscillations correspond?

4.167. Find the ratio of the fundamental tone frequencies of two
identical strings after one of them was stretched by n; = 2.0% and
the other, by 1, = 4.0%. The tension is assumed to be proportional
to the elongation.

4.168. Determine in what way and how many times will the fun-
damental tone frequency of a stretched wire change if its length is
shortened by 35% and the tension increased by 70%.

4169. To determine the sound propagation velocity in air by
acoustic resonance technique one can use a pipe with a piston and
a sonic membrane closing one of its ends. Find the velocity of sound
if the distance between the adjacent positions of the piston at which
resonance is observed at a frequency v = 2000 Hz is equal to [ =
= 8.5 cm.

4.170. Find the number of possible natural oscillations of air col-
umn in a pipe whose frequencies lie below vy = 1250 Hz. The length
of the pipe is I = 85 cm. The velocity of sound is v = 340 m/s.
Consider the two cases:

(a) the pipe is closed from one end;

(b) the pipe is opened from both ends.

The open ends of the pipe are assumed to be the antinodes of dis-
placement.

4.171. A copper rod of length [ = 50 cm is clamped at its midpoint.
Find the number of natural longitudinal oscillations of the rod in
the frequency range from 20 to 50 kHz. What are those frequencies
equal to?

4.172. A string of mass m is fixed at both ends. The fundamental
tone oscillations are excited with circular frequency ®» and maximum
displacement amplitude a,,,,. Find:

. (a) the maximum kinetic energy of the string;

(b) the mean kinetic energy of the string averaged over one oscil-
lation period.

4.1473. A standing wave £ = a sin kzr-cos of is maintained in a
homogeneous rod with cross-sectional area S and density p. Find the
total mechanical energy confined between the sections corresponding
to the adjacent displacement nodes.

4.174. A source of sonic oscillations with frequency v, = 1000 Hz
moves at right angles to the wall with a velocity u = 0.17 m/s.
Two stationary receivers R, and R, are located on a straight line,
coinciding with the trajectory of the source, in the following succes-
sion: R,-source-R,-wall. Which receiver registers the beatings and
what is the beat frequency? The velocity of sound is equal to v =
= 340 m/s.

4.175. A stationary observer receives sonic oscillations from two
tuning forks one of which approaches, and the other recedes with
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the same velocity. As this takes place, the observer hears the beatings
with frequency v = 2.0 Hz. Find the velocity of each tuning fork
if their oscillation frequency is v, = 680 Hz and the velocity of sound
in air is v = 340 m/s.

4.176. A receiver and a source of sonic oscillations of frequency
vo = 2000 Hz are located on the z axis. The source swings harmo-
nically along that axis with a circular frequency » and an amplitude
a =950 cm. At what value of ® will the frequency bandwidth regis-
tered by the stationary receiver be equal to Av = 200 Hz? The velo-
city of sound is equal to v = 340 m/s.

4.177. A source of sonic oscillations with frequency v, = 1700 Hz
and a receiver are located at the same point. At the moment t — 0
the source starts receding from the receiver with constant accelera-
tion w — 10.0 m/s*. Assuming the velocity of sound to be equal to
v = 340 m/s, find the oscillation frequency registered by the station-
ary receiver ¢ = 10.0 s after the start of motion.

4.178. A source of sound with natural frequency v, = 1.8 kHz
moves uniformly along a straight line separated from a stationary
observer by a distance ! = 250 m. The velocity of the source is equal
to n = 0.80 fraction of the velocity of sound. Find:

(a) the frequency of sound received by the observer at the moment
when the source gets closest to him;

(b) the distance between the source and the observer at the moment
when the observer receives a frequency v = wv,.

4.179. A stationary source sends forth monochromatic sound.
A wall approaches it with velocity u = 33 cm/s. The propagation
velocity of sound in the medium is v = 330 m/s. In what way and
how much, in per cent, does the wavelength of sound change on re-
flection from the wall?

4.180. A source of sonic oscillations with frequency v, = 1700 Hz
and a receiver are located on the same normal to a wall. Both the
source and the receiver are stationary, and the wall recedes from the
source with velocity u = 6.0 cm/s. Find the beat frequency registered
by the receiver. The velocity of sound is equal tomv = 340 m/s,

4.181. Find the damping coefficient y of a sound wave if at dis-
tancesr; = 10 m and r, = 20 m from a point isotropic source of sound
the sound wave intensity values differ by a factor n = 4.5.

4.182. A plane sound wave propagates along the z axis. The damp-
ing coefficient of the wave is y = 0.0230 m~!. At the point z = 0
the loudness level is L = 60 dB. Find:

(a) the loudness level at a point with coordinate z = 50 m;

(b) the coordinate z of the point at which the sound is not heard
any more.

4.183. At a distance r, = 20.0 m from a point isotropic source
of sound the loudness level L, — 30.0 dB. Neglecting the damping
of the sound wave, find:

(a) the loudness level at a distance r = 10.0 m from the source;

(b) the distance from the source at which the sound is not heard.
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4.184. An observer 4 located at a distance rg ==5,0m from a
ringing tuning fork notes the sound to fade away - 19 s later
than an observer B who is located at a distance r, = 50 m from
the tuning fork. Find the damping coefficient p of Bscillations of
the tuning fork. The sound velocity v = 340 m/s.

4.185. A plane longitudinal harmonic wave propagates in a me-
dium with density p. The velocity of the wave propagation is v.
Assuming that the density variations of the medium, induced by the
propagating wave, Ap < p, demonstrate that

(a) the pressure increment in the medium Ap = —pv? (9%/dz),
where 3t/dx is the relative deformation;

(b) the wave intensity is defined by Eq. (4.3i).

4.186. A ball of radius R = 50 c¢m is located in the way of pro-
pagation of a plane sound wave. The sonic wavelength is A = 20 c¢m,
the frequency is v = 1700 Hz, the pressure oscillation amplitude
in air is (Ap),, = 3.5 Pa. Find the mean energy flow, averaged over
an oscillation period, reaching the surface of the ball.

4.187. A point A is located at a distance r = 1.5 m from a point
isotropic source of sound of frequency v = 600 Hz. The sonic power
of the source is P = 0.80 W. Neglecting the damping of the waves
and assuming the velocity of sound in air to be equal to v = 340 m/s,
find at the point 4:

(a) the pressure oscillation amplitude (Ap),, and its ratio to the
air pressure;

(b) the oscillation amplitude of particles of the medium; compare
it with the wavelength of sound.

4.188. At a distance r = 100 m from a point isotropic source of
sound of frequency 200 Hz the loudness level is equal to L = 50 dB.
The audibility threshold at this frequency corresponds to the sound
intensity I, = 0.0 nW/m?. The damping coefficient of the sound
wave is y = 5.0-10~* m~1. Find the sonic power of the source.

4.4. ELECTROMAGNETIC WAVES, RADIATION

e Phase velocity of an electromagnetic wave:

v=c/Vep, where ¢ =1/} eopo. (4.4a)
e In a travelling electromagnetic wave:
EY teo = HY ipo (4.4b)
e Space density of the energy of an electromagnetic field:
w=—I§29— EZ-I—I- (4.4¢)
e Flow density of electromagnetic energy, the Poynting vector:
S = [EH], (4.4d)

o Energy flow density of electric dipole radiation in a far field zone:
S ~ ~12— sin? 0, (4.4e)
r
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where r is the distance from the dipole, ¢ is the angle between the radius vector
r and the axis of the dipole.

e Radiation power of an electric dipole with moment p (¢) and of a charge
g, moving with acceleration w:

1 2pe 1 247w
T 4mgy 33 ° " 4ne, 38 ¢

(4.41)

4.189. An electromagnetic wave of frequency v = 3.0 MHz passes
from vacuum into a non-magnetic medium with permittivity ¢ =
= 4.0. Find the increment of its wavelength.

4.190. A plane electromagnetic wave falls at right angles to the
surface of a plane-parallel plate of thickness I. The plate is made
of non-magnetic substance whose permittivity decreases exponen-
tially from a value g, at the front surface down to a value &, at the
rear one. How long does it take a given wave phase to travel across
this plate?

4.191. A plane electromagnetic wave of frequency v = 10 MHz
propagates in a poorly conducting medium with conductivity g =
= 10 mS/m and permittivity & = 9. Find the ratio of amplitudes
of conduction and displacement current densities.

4,192. A plane electromagnetic wave E = E,, cos (of — kr)
propagates in vacuum. Assuming the vectors E,, and k to be kno“{n,
find the vector H as a function of time ¢ at the point with radius
vector r = 0.

4.193. A plane electromagnetic wave E = E,, cos (ot — kr),
where E,, = E e,, k = ke,, e,, e, are the unit vectors o_f the z,
y axes, propagates in vacuum. Find the vector H at the point vylth
radius vector r = ze, at the moment (a) t = 0, (b) ¢t = t,. Consider
the case when E,, = 160 V/m, k = 0.51 m~!, z = 7.7 m, and ¢, =
= 33 mbs.

4.194. A plane electromagnetic wave E = E, cos (of — kz)
propagating in vacuum induces the emf &;, 4 in a square frame with
side 1. The orientation of the frame is shown in Fig. 4.37. Find
the amplitude value ¢,,,, if E,, = 0.50 mV/m, the frequency » =5.0 MHz
and/ = 50 cm.y

\£

g I x

Fig. 4.37. Fig. 4.38.

4.195. Proceeding from Maxwell’s equations show that in tf_xe
case of a plane electromagnetic wave (Fig. 4.38) propagating in
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vacuum the following relations hold:
OE 20B 9B OE

ot % T T e

4.196. Find the mean Poynting vector (S) of a plane electromag-
netic wave E = E,, cos (of — kr) if the wave propagates in va-
cuum.

4.197. A plane harmonic electromagnetic wave with plane polari-
zation propagates in vacuum. The electric component of the wave
has a strength amplitude E,, = 50 mV/m, the frequency is v =
= 100 MHz. Find:

(a) the efficient value of the displacement current density;

(b) the mean energy flow density averaged over an oscillation
period.

4.198. A ball of radius R = 50 cm is located in a non-magnetic
medium with permittivity ¢ = 4.0. In that medium a plane electro-
magnetic wave propagates,the strength amplitude of whose electric
component is equal to £, = 200 V/m. What amount of energy
reaches the ball during a time interval t = 1.0 min?

4.199. A standing electromagnetic wave with electric component
E = E,, cos kz-cos ot is sustained along the z axis in vacuum. Find
the magnetic component of the wave B (z, t). Draw the approximate
distribution pattern of the wave’s electric and magnetic components
(E and B) at the moments t = 0 and ¢ = T/4, where T is the oscilla-
tion period.

4.200. A standing electromagnetic wave E = E,. cos kx-cos ot
is sustained along the z axis in vacuum. Find the projection of the
Poynting vector on the z axis S, (z, #) and the mean value of that
projection averaged over an oscillation period.

4.201. A parallel-plate air capacitor whose electrodes are shaped
as discs of radius R = 6.0 cm is connected to a source of an alternat-
ing sinusoidal voltage with frequency ® = 1000 s-! Find the
ratio of peak values of magnetic and electric energies within the
capacitor.

4.202. An alternating sinusoidal current of frequency o -
= 1000 s=! flows in the winding of a straight solenoid whose cross-
sectional radius is equal to R = 6.0 cm. Find the ratio of peak
values of electric and magnetic energies within the solenoid.

4.203. A parallel-plate capacity whose electrodes are shaped as
round discs is charged slowly. Demonstrate that the flux of the
Poynting vector across the capacitor’s lateral surface is equal to the
increment of the capacitor’s energy per unit time. The dissipation
of field at the edge is to be neglected in calculations.

4.204. A current I flows along a straight conductor with round
cross-section. Find the flux of the Poynting vector across the lateral
surface of the conductor’s segment with resistance R.

4.205. Non-relativistic protons accelerated by a potential diffe-
rence U form a round beam with current 7. Find the magnitude and
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direction of the Poynting vector outside the beam at a distance r
from its axis.

4.206. A current flowing in the winding of a long straight solenoid
is increased at a sufficiently slow rate. Demonstrate that the rate
at which the energy of the magnetic field in the solenoid increases
is equal to the flux of the Poynting vector across the lateral surface
of the solenoid.

4.207. Fig. 4.39 illustrates a segment of a double line carrying
direct current whose direction is indicated by the arrows. Taking
into account that the potential ¢, > ¢@,, and making use of the
Poynting vector, establish on which side (left or right) the source
of the current is located.

¥
¥z

Fig. 4.39.

4.208. The energy is transferred from a source of constant voltage
V to a consumer by means of a long straight coaxial cable with
negligible active resistance. The consumed current is I. Find the
energy flux across the cross-section of the cable. The conductive
sheath is supposed to be thin.

4.209. A source of ac voltage V =V, cos wt delivers energy to
a consumer by means of a long straight coaxial cable with negligible
active resistance. The current in the circuit varies as I =
= I, cos ot — @). Find the time-averaged energy flux through the
cross-section of the cable. The sheath is thin.

4.210. Demonstrate that at the boundary between two media the
normal components of the Poynting vector are continuous, i.e.
Sin = San.

14.211.zDemonstrate that a closed system of charged non-relati-
vistic particles with identical specific charges emits no dipole ra-
diation.

4.212. Find the mean radiation power of an electron performing
harmonic oscillations with amplitude a = 0.10 nm and frequency
o = 6.5.10'* s-!

4.213. Find the radiation power developed by a non-relativistic
particle with charge e and mass m, moving along a circular orbit
of radius R in the field of a stationary point charge gq.

4.214. A particle with charge e and mass m flies with non-relati-
vistic velocity v at a distance b past a stationary particle with
charge g. Neglecting the bending of the trajectory of the moving
particle, find the energy lost by this particle due to radiation during
the total flight time.

4.215. A non-relativistic proton enters a half-space along the
normal to the transverse uniform magnetic field whose induction

196

equals B = 1.0 T. Find the ratio of the energy lost by the proton
due to radiation during its motion in the field to its initial kinetic
energy.

4.216. A non-relativistic charged particle moves in a transverse
uniform magnetic field with induction B. Find the time dependence
of the particle’s kinetic energy diminishing due to radiation. How
soon will its kinetic energy decrease e-fold? Calculate this time
interval for the case (a) of an electron, (b) of a proton.

4.217. A charged particle moves along the y axis according to the
law y = a cos ot, and the point of observation P is located on the «
axis at a distance [ from the particle (I 3> a). Find the ratio of electro-
magnetic radiation flow densities S,/S, at the point P at the moments
when the coordinate of the particle y, = 0 and y, = a. Calculate
that ratio if o = 3.3-10¢ s-1  and I = 190 m.

4.218. A charged particle moves uniformly with velocity v along
a circle of radius R in the plane zy (Fig. 4.40). An observer is located

y, U
4 N
\/|

v 2

Fig. 4.40.

on the x axis at a point P which is removed from the centre of the
circle by a distance much exceeding R. Find:

(a) the relationship between the observed values of the y projec-
tion of the particle’s acceleration and the y coordinate of the particle;

(b) the ratio of electromagnetic radiation flow densities S,/S,
at the point P at the moments of time when the particle moves, from
the standpoint of the observer P, toward him and away from him,
as shown in the figure.

4.219. An electromagnetic wave emitted by an elementary dipole
propagates in vacuum so that in the far field zone the mean value
of the energy flow density is equal to S, at the point removed from
the dipole by a distance r along the perpendicular drawn to the
dipole’s axis. Find the mean radiation power of the dipole.

4.220. The mean power radiated by an elementary dipole is equal
to Py. Find the mean space density of energy of the electromagnetic
field in vacuum in the far field zone at the point removed from the
dipole by a distance r along the perpendicular drawn to the dipole’s
axis.

4.221. An electric dipole whose modulus is constant and whose
moment is equal to p rotates with constant angular velocity o
about the axis drawn at right angles to the axis of the dipole and
passing through its midpoint. Find the power radiated by such
a dipole.
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4.222. A free electron is located in the field of a plane electromagne-
tic wave. Neglecting the magnetic component of the wave disturbing
its motion, find the ratio of the mean energy radiated by the oscil-
lating electron per unit time to the mean value of the energy flow
density of the incident wave.

4.223. A plane electromagnetic wave with frequency o falls upon
an elastically bonded electron whose natural frequency equals ,.
Neglecting the damping of oscillations, find the ratio of the mean
energy dissipated by the electron per unit time to the mean value
of the energy flow density of the incident wave.

4.224. Assuming a particle to have the form of a ball and to ab-
sorb all incident light, find the radius of a particle for which its
gravitational attraction to the Sun is counterbalanced by the force
that light exerts on it. The power of light radiated by the Sun equals
P = 4.10* W, and the density of the particle is p = 1.0 g/cm?.

PART FIVE

OPTICS

5.1. PHOTOMETRY AND GEOMETRICAL OPTICS

e Spectral response of an eye V (A) is shown in Fig. 5.1.
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Fig. 5.1.

e Luminous intensity I and illuminance E:

dad __ dDipne 5.1a)
I=%a» E=—35 - (
o Illuminance produced by a point isotropic source:
lcosa 5.1b
E= T (5-1b)

where o is the angle between the normal to the surface and the direction to the
source.
e Luminosity M and luminance L:

demty S 5.¢)
M=—3s " L= @&Scess - (
e For a Lambert source L = const and luminosity
M = nlL. (5.1d)
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o Relation between refractive angle 0 of a prism and least deviation
angle a:

2t+8 _ n S (5.16)

sin 3 3

where n is the refractive index of the prism.
o Equation of spherical mirror:

1 1 2
— 5.4f
s’ s R’ (5.16)

where R is the curvature radius of the mirror.
e Equations for aligned optical system (Fig. 5.2):

—’;—:'—"":—: ’ £—ll'+"£—= , zz'=ff". (5.1g)
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Fig. 5.2.

e Relations between focal lengths and optical power:
n’ n f n
[, [ —— — T e —— 5.4h
= D / R . (5.1h)
e Optical power of a spherical refractive surface:

n'—n

0= R

(5.1i)

e Optical power of a thin lens in a medium with réfractive index ng:

o=(n—n) (7=—72) (5.4))

where n is the refractive index of the lens.
e Optical power of a thick lens:

®=®1+®2—%®1®2, (5-1k)

where d is the thickness of the lens. This equation is also valid for a system of
two thin lenses separated by a medium with refractive index n.
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e Principal planes H and H’ are removed from the crest points O and 0’
of surfaces of a thick lens (Fig. 5.3) by the following distances:

=70 XY= (5.11)

e Lagrange-Helmholtz invariant:
nyu == const. (5.1m)
e Magnifying power of an optical device:

__ tanv’
F—h—tanw , (5.1n)

where ¥’ and 4 are the angles subtended at the eye by an image formed by the
optical device and by the corresponding object at a distance for convenient view-
ing (in the case of a microscope or magnifying glass that distance is equal to
1y = 25 cm).

5.1. Making use of the spectral response curve for an eye (see
Fig. 5.1), find:

(a) the energy flux corresponding to the luminous flux of 1.0 Im
at the wavelengths 0.51 and 0.64 pm;

(b) the luminous flux corresponding to the wavelength interval
from 0.58 to 0.63 pm if the respective energy flux, equal to @, =
= 4.5 mW, is uniformly distributed over all wavelengths of the
interval. The function V (A) is assumed to be linear in the given
spectral interval.

5.2. A point isotropic source emits a luminous flux ® = 10 lm
with wavelength A = 0.59 pm. Find the peak strength values of
electric and magnetic fields in the luminous flux at a distance r =
= 1.0 m from the source. Make use of the curve illustrated in
Fig. 5.1.

5.3. Find the mean illuminance of the irradiated part of an opaque
sphere receiving

(a) a parallel luminous flux resulting in illuminance £, at the
point of normal incidence;

(b) light from a point isotropic source located at a distance ] =
= 100 cm from the centre of the sphere; the radius of the sphere is
R =60 cm and the luminous intensity is I = 36 cd.
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5.4. Determine the luminosity of a surface whose luminance
depends on direction as L = L, cos 0, where 0 is the angle between
the radiation direction and the normal to the surface.

5.5. A certain luminous surface obeys Lambert’s law. Its lumi-
nance is equal to L. Find:

(a) the luminous flux emitted by an element AS of this surface
into a cone whose axis is normal to the given element and whose
aperture angle is equal to 0;

(b) the luminosity of such a source.

5.6. An illuminant shaped as a plane horizontal disc S = 100 cm?®
in area is suspended over the centre of a round table of radius R =
= 1.0 m. Its luminance does not depend on direction and is equal
to L = 1.6-10* cd/m?. At what height over the table should the
illuminant be suspended to provide maximum illuminance at the
circumference of the table? How great will that illuminance be?
The illuminant is assumed to be a point source.

5.7. A point source is suspended at a height 2 = 1.0 m over the
centre of a round table of radius R = 1.0 m. The luminous intensity /
of the source depends on direction so that illuminance at all points
of the table is the same. Find the function I (8), where 0 is the angle
between the radiation direction and the vertical, as well as the lu-
minous flux reaching the table if 7 (0) = I, = 100 cd.

5.8. A vertical shaft of light from a projector forms a light spot
S = 100 cm? in area on the ceiling of a round room of radius R =
= 2.0 m. The illuminance of the spot is equal to E = 1000 lx.
The reflection coefficient of the ceiling is equal to p = 0.80. Find
the maximum jlluminance of the wall produced by the light reflected
from the ceiling. The reflection is assumed to obey Lambert’s
law.

5.9. A luminous dome shaped as a hemisphere rests on a horizon-
tal plane. Its luminosity is uniform. Determine the illuminance at
the centre of that plane if its luminance equals L and is independent
of direction.

5.10. A Lambert source has the form of an infinite plane. Its
Juminance is equal to L. Find the illuminance of an area element
oriented parallel to the given source.

5.11. An illuminant shaped as a plane horizontal disc of radius
R = 25 cm is suspended over a table at a height z = 75 cm. The
illuminance of the table below the centre of the illuminant is equal
to £y = 70 1x. Assuming the source to obey Lambert’'s law, find
its luminosity.

5.12. A small lamp having the form of a uniformly luminous sphere
of radius R = 6.0 cm is suspended at a height 2 == 3.0 m above the
floor. The luminance of the lamp is equal to L = 2.0-10* cd/m?
and is independent of direction. Find the illuminance of the floor
directly below the lamp.

5.13. Write the law of reflection of a light beam from a mirror
in vector form, using the directing unit vectors e and e’ of the inci-
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dent and reflected beams and the unit vector n of the outside normal
to the mirror surface.

9.14. Demonstrate that a light beam reflected from three mutually
perpendicular plane mirrors in succession reverses its direc-
tion.

9.15. At what value of the angle of incident 8, is a shaft of light
rfﬂ(fac?ted from the surface of water perpendicular to the refracted
shaft:

9.16. Two optical media have a plane boundary between them.
Suppose 6, is the critical angle of incidence of a beam and 8, is
the angle of incidence at which the refracted beam is perpendicular
to the reflected one (the beam is assumed to come from an optically
denser medium). Find the relative refractive index of these media
if sin 0,../sin 8, = n = 1.28.

9.17. A light beam falls upon a plane-parallel glass plate d=6.0 cm
in thickness. The angle of incidence is 8 == 60°. Find the value of
deflection of the beam which passed through that plate.

5.18. A man standing on the edge of a swimming pool looks at
a stone lying on the bottom. The depth of the swimming pool is
equal to . At what distance from the surface of water is the image
of the stone formed if the line of vision makes an angle 8 with the
normal to the surface?

5.19. Demonstrate that in a prism with small refracting angle 0
the shaft of light deviates through the angle a ~ (n — 1) 0 regard-
less of the angle of incidence, provided that the latter is also small.

5.20. A shaft of light passes through a prism with refracting angle 0
and refractive index n. Let a be the diffraction angle of the shaft.
Demonstrate that if the shaft of light passes through the prism
symmetrically,

(a) the angle a is the least;

(b) the relationship between the angles o and 0 is defined by
Eq. (5.1e).

5.21. The least deflection angle of a certain glass prism is equal
to its refracting angle. Find the latter.

5.22. Find the minimum and maximum deflection angles for
a lig(};lt ray passing through a glass prism with refracting angle

= 60°.

5.23. A trihedral prism with refracting angle 60° provides the
least deflection angle 37° in air. Find the least deflection angle of
that prism in water.

5.24. A light ray composed of two monochromatic components
passes through a trihedral prism with refracting angle 6 = 60°.
Find the angle Aa between the components of the ray after its pass-
age through the prism if their respective indices of refraction are
equal to 1.515 and 1.520. The prism is oriented to provide the least
deflection angle.

5.25. Using Fermat’s principle derive the laws of deflection and
refraction of light on the plane interface between two media.
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5.26. By means of plotting find:

(a) the path of a light ray after reflection from a concave and
convex spherical mirrors (see Fig. 5.4, where F is the focal point,
00" is the optical axis);

F

(@) (8)

Fig. 5.4.
(b) the positions of the mirror and its focal point in the cases
illustrated in Fig. 5.5, where P and P’ are the conjugate points.
op’ o
Pe
12 o’
(Y4 0 0,
@ (3)
Fig. 5.5.

5.27. Determine the focal length of a concave mirror if:

(a) with the distance between an object and its image being equal
to I = 15 cm, the transverse magnification § = —2.0;

(b) in a certain position of the object the transverse magnification
is B, = —0.50 and in another position displaced with respect to the
forme(l)' 2bgr a distance I = 5.0 cm the transverse magnification B, =

5.28. A point source with luminous intensity I, = 100 cd is
positioned at a distance s = 20.0 cm from the crest of a concave
mirror with focal length f = 25.0 cm. Find
the luminous intensity of the reflected ray
if the reflection coefficient of the mirror is
o = 0.80.

5.29. Proceeding from Fermat’s principle
derive the refraction formula for paraxial
rays on a spherical boundary surface of ra-
dius R between media with refractive in-
dices n and n'.

5.30. A parallel beam of light falls from Fig. 5.6
vacuum on a surface enclosing a medium g o
with refractive index n (Fig. 5.6). Find the shape of that surface,
z (r), if the beam is brought into focus at the point F at a distance f
from the crest 0. What is the maximum radius of a beam that can
still be focussed?
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5.31. A point source is located at a distance of 20 cm from the
front surface of a symmetrical glass biconvex lens. The lens is 5.0 cm
thick and the curvature radius of its surfaces is 5.0 cm. How far
beyond the rear surface of this lens is the image of the source formed?

5.32. An object is placed in front of convex surface of a glass
plano-convex lens of thickness d = 9.0 cm. The image of that object
is formed on the plane surface of the lens serving as a screen. Find:

(a) the transverse magnification if the curvature radius of the
lens’s convex surface is R = 2.5 cm;

(b) the image illuminance if the luminance of the object is L =
= 7700 cd/m? and the entrance aperture diameter of the lens is
D = 5.0 mm; losses of light are negligible.

5.33. Find the optical power and the focal lengths

(a) of a thin glass lens in liquid with refractive index n, = 1.7
if its optical power in air is ®, = —5.0 D;

(b) of a thin symmetrical biconvex glass lens, with air on one side
and water on the other side, if the optical power of that lens in air
is @, = +10 D.

5.34. By means of plotting find:

(a) the path of a ray of light beyond thin converging and diverging
lenses (Fig. 5.7, where OO’ is the optical axis, F and F’ are the front
and rear focal points);

(a) ()
Figs 5.7.

(b) the position of a thin lens and its focal points if the position
of the optical axis OO’ and the positions of the cojugate points
P, P’ (see Fig. 5.5) are known; the media on both sides of the lenses
are identical;

(c) the path of ray 2 beyond the converging and diverging lenses
(Fig. 5.8) if the path of ray I and the positions of the lens and of its

/I \Z\I
0 0 o 0
\7\V //1\
(@) (6)
Fig. 5.8.

optical axis OO’ are all known; the media on both sides of the lenses
are identical.

5.35. A thin converging lens with focal length f = 25 cm projects
the image of an object on a screen removed from the lens by a dis-
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tance [=>5.0 m. Then the screen was drawn closer to the lens by a dis-
tance Al = 18 cm. By what distance should the object be shifted
for its image to become sharp again?

9.36. A source of light is located at a distance ! = 90 c¢m from
a screen. A thin converging lens provides the sharp image of the
source when placed between the source of light and the screen at two
positions. Determine the focal length of the lens if

(gz) the distance between the two positions of the lens is Al —
= eimn;

(b) the transverse dimensions of the image at one position of the
lens are = 4.0 greater than those at the other position.

9.37. A thin converging lens is placed between an object and
a screen whose positions are fixed. There are two positions of the
lens at which the sharp image of the object is formed on the screen.
Find the transverse dimension of the object if at one position of the
lens the image dimension equals ' = 2.0 mm and at the other,
k" = 4.5 mm.

5.38. A thin converging lens with aperture ratio D 1f=1:3.5
(D is the lens diameter, f is its focal length) provides the image of
a sufficiently distant object on a photographic plate. The object
luminance is L = 260 cd/m?. The losses of light in the lens amount
to @ = 0.10. Find the illuminance of the image.

5.39. How does the luminance of a real image depend on dia-
meter D of a thin converging lens if that image is observed

(a) directly;

(b) on a white screen backscattering according to Lambert’s law?

5.40. There are two thin symmetrical lenses: one is converging,
with refractive index n; = 1.70, and the other is diverging with
refractive index n, = 1.51. Both lenses have the same curvature
radius of their surfaces equal to R = 10 cm. The lenses were put
close together and submerged into water. What is the focal length
of this system in water?

5.41. Determine the focal length of a concave spherical mirror
which is manufactured in the form of a thin symmetric biconvex
glass lens one of whose surfaces is silvered. The curvature radius
of the lens surface is R = 40 cm.

9.42. Figure 5.9 illustrates an aligned system consisting of three
thin lenses. The system is located in air. Determine:

\
];\50 em —>L—~5.00m
0 l l o
\

/
+10.0D =100 +00D

Fig. 5.9.

(a) the position of the point of convergence of a parallel ray
incoming from the left after passing through the system;

(b) the distance between the first lens and a point lying on the
axis to the left of the system, at which that point and its image are
located symmetrically with respect to the lens system.

5.43. A Galilean telescope of 10-fold magnification has the length
of 45 cm when adjusted to infinity. Determine:

(a) the focal lengths of the ielescope’s objective and ocular:

(b) by what distance the ocular should be displaced to adjust the
telescope to the distance of 50 m.

5.44. Find the magnification of a Keplerian telescope adjusted to
infinity if the mounting of the objective has a diameter D and the
image of that mounting formed by the telescope’s ocular has a dia-
meter d.

5.45. On passing through a telescope a flux of light increases its
intensity = 4.0-10* times. Find the angular dimension of a distant
object if its image formed by that telescope has an angular dimen-
sion ¢ = 2.0°.

5.46. A Keplerian telescope with magnification T' = 15 was sib-
merged into water which filled up the inside of the telescope. To make
the system work as a telescope again within the former dimensions,
the objective was replaced. What has the magnification of the telescope
become equal to? The refractive index of the glass of which the
ocular is made is equal to n =: 1.50.

5.47. At what magnification ' of a telescope with a diameter of
the objective D = 6.0 cm is the illuminance of the image of an
object on the retina not less than without the telescope? The pupil
diameter is assumed to be equal to d, = 3.0 mm. The losses of light
in the telescope are negligible.

5.48. The optical powers of the objective and the ocular of a micro-
scope are equal to 100 and 20 D respectively. The microscope magni-
fication is equal to 50. What will the magnification of the microscope
be when the distance between the objective and the ocular is increased
by 2.0 cm?

5.49. A microscope has a numerical aperture sin o — 0.12, where «
is the aperture angle subtended by the entrance pupil of the micro-
scope. Assuming the diameter of an eye’s pupil to be equal to d, =
= 4.0 mm, determine the microscope magnification at which

(a) the diameter of the beam of light coming from the miecroscope
is equal to the diameter of the eye’s pupil;

(b) the illuminance of the image on the retina is independent of
magnification (consider the case when the beam of light passing
through the system “microscope-eye” is bounded by the mounting
of the objective).

5.50. Find the positions of the principal planes, the focal and
nodal points of a thin biconvex symmetric glass lens with curvature
radius of its surfaces equal to R = 7.50 cm. There is air on one
side of the lens and water on the other.



9.51. By means of plotting find the positions of focal points and
principal planes of aligned optical systems illustrated in Fig. 5.10:

(a) a telephoto lens, that is a combination of a converging and
a diverging thin lenses (f, = 1.5 @, f, = —1.5 a);

0 '4“1* 0’ OT‘——E_;F o o m o'
VA Vool L7\
% 2 i 72 % 2,
(a) () (c)
Fig. 5.10.

(b) asystem of two thin converging lenses (f, = 1.5 q, f, = 0.5 a);

() a thick convex-concave lens (d = 4 cm, n = 1.5, ®, = 450 D,
@, = —50 D).

9.52. An optical system is located in air. Let OO’ be its optical
axis, F and F’ are the front and rear focal points, H and H’ are the
front and rear principal planes, P and P’ are the conjugate points.
By means of plotting find:

(a) the positions F' and H' (Fig. 5.11a);

(b) the position of the point S’ conjugate to the point S
(Fig. 5.11b);

H
/D. .
o—L 0 0

o' 0 o’

P’
(6) @)
Fig. 5.11.

(a)

(c) the positions ¥, F’, and H' (Fig. 5.11c, where the path of the
ray of light is shown before and after passing through the system).

5.53. Suppose F and F’ are the front and rear focal points of an
optical system, and H and H' are its front and rear principal points.
By means of plotting find the position of the image S’ of the point S
for the following relative positions of the points S, F, F', H,
and H':

(a) FSHH'F’; (b) HSF'FH'; (¢) H'SF'FH; (d) F'H'SHF.

5.54. A telephoto lens consists of two thin lenses, the front converg-
ing lens and the rear diverging lens with optical powers @; =
= 410 D and ®, = —10 D. Find:

(a) the focal length and the positions of principal axes of that
system if the lenses are separated by a distance d = 4.0 cm;

(b) the distance d between the lenses at which the ratio of a focal
length f of the system to a distance ! between the converging lens and
the rear principal focal point is the highest. What is this ratio equal
to?
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5.55. Calculate the positions of the principal planes and focal
points of a thick convex-concave glass lens if the curvature radius
of the_convex surface is equal to R; = 10.0 cm and of the concave
surface to R, = 5.0 cm and the lens thickness is d = 3.0 cm.

5.56. An aligned optical system consists of two thin lenses with
focal lengths f; and f,, the distance between the lenses being equal
to d. The given system has to be replaced by one thin lens which,
at any position of an object, would provide the same transverse
magnification as the system. What must the focal length of this lens
be equal to and in what position must it be placed with respect
to the two-lens system?

5.57. A system consists of a thin symmetrical converging glass
lens with the curvature radius of its surfaces R = 38 cm and a plane
mirror oriented at right angles to the optical axis of the lens. The
distance between the lens and the mirror is I = 12 cm. What is
the optical power of this system when the space between the lens
and the mirror is filled up with water?

5.58. At what thickness will a thick convex-concave glass lens
in air

(a) serve as a telescope provided the curvature radius of its convex
surface is AR = 1.5 e¢m greater than that of its concave surface?

(b) have the opticar power equal to —1.0 D if the curvature
radii of its convex and concave surfaces are equal to 10.0 and 7.5 cm
respectively? ‘

5.59. Find the positions of the principal planes, the focal length
and the sign of the optical power of a thick convex-concave glass
lens

(a) whose thickness is equal to d and curvature radii of the surfaces
are the same and equal to R;

(b) whose refractive surfaces are concentric and have the curva-
ture radii R, and R, (R, > R,).

5.60. A telescope system consists of two glass balls with radii
R; = 5.0 cm and R, = 1.0 cm. What are the distance between the
centres of the balls and the magnification of the system if the bigger
ball serves as an objective?

5.61. Two identical thick symmetrical biconvex lenses are put
close together. The thickness of each lens equals the curvature
radius of its surfaces, i.e. d = R = 3.0 cm. Find the optical power
of this system in air.

5.62. A ray of light propagating in an isotropic medium with
refractive index n varying gradually from point to point has a cur-
vature radius p determined by the formula

1
= —gv— (In ),
where the derivative is taken with respect to the principal normal
to the ray. Derive this formula, assuming that in such a medium
the law of refraction n sin @ = const holds. Here 8 is the angle be-

tween the ray and the direction of the vector Vn at a given point.
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5.63. Find the curvature radius of a ray of light propagating
mm a horizontal direction close to the Earth’s surface where the
gradient of the refractive index in air is equal to approximately
3-10-% m-!. At what value of that gradient would the ray of light
propagate all the way round the Earth?

5.2. INTERFERENCE OF LIGHT
e Width of a fringe:
Ax:id-k, (5.2a)

where 1 is the distance from the sources to the screen, d is the distance between
the ‘sources.

e Temporal and spatial coherences. Coherence length and coherence radius:
A2

A
leon = AN Peoh == E y (5.2b)

where 1 is the angular dimension of the source.

e Condition for interference maxima in the case of light reflected from a
thin plate of thickness b:

20 nE—sin? B, = (k + 1/2) 2, (5.2¢)

where & is an integer.

e Newton’s rings produced on reflection of light from the surfaces of an
air interlayer formed between a lens of radius R and a glass plate with which
the convex surface of the lens is in contact. The radii of the rings:

r = V ARK/2, (5.2d)

with the rings being bright if k=1, 3, 5, ..., and dark if k= 2, 4, 6, ...
The value k¥ = 0 corresponds to the middle of the central dark spot.

5.64. Demonstrate that when two harmonic oscillations are added,
the time-averaged energy of the resultant oscillation is equal to
the sum of the energies of the constituent oscillations, if both of
them

(a) have the same direction and are incoherent, and all the values
of the phase difference between the oscillations are equally probable;

(b) are mutually perpendicular, have the same frequency and
an arbitrary phase difference.

5.65. By means of plotting find the amplitude of the oscillation
resulting from the addition of the following three oscillations of the
same direction:

g, =acosot, &, =2asin ot, &3 = 1.5a cos (0t + /3).

5.66. A certain oscillation results from the addition of coherent
oscillations of the same direction £, = a cos [wt 4+ (K — 1) ¢],
where k& is the number of the oscillation (k =1, 2, ..., N), ¢ is
the phase difference between the kth and (k — 1)th oscillations.
Find the amplitude of the resultant oscillation.
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5.67. A system illustrated in Fig. 5.12 consists of two coherent
point sources I and 2 located in a certain plane so that their dipole
moments are oriented at right angles to that plane. The sources are
separated by a distance d, the radiation wavelength
is equal to A. Taking into account that the oscilla-
tions of source 2 lag in phase behind the oscillations
of source 1 by ¢ (¢ << x), find: : g,

(a) the angles 8 at which the radiation intensity 7
is maximum;

(b) the conditions under which theradiation inten-
sity in the direction 8 = n is maximum and in the 2
opposite direction, minimum. .

5.68. A stationary radiating system consists of a & 912
linear chain of parallel oscillators separated by a dis-
tance d, with the oscillation phase varying linearly along the
chain. Find the time dependence of the phase difference A¢ between
the neighbouring oscillators at which the principal radiation maxi-
mum of the system will be “scanning” the surroundings with the
constant angular velocity .

5.69. In Lloyd’s mirror experiment (Fig. 5.13) a light wave emitted
directly by the source S (narrow slit) interferes with the wave reflect-
ed from a mirror M. As a result, an interference fringe pattern is

Sc%

M 72

Fig. 5.13.

formed on the screen Sc. The source and the mirror are separated by
a distance I = 100 cm. At a certain position of the source the fringe
width on the screen was equal to Az= 0.25 mm, and after the source
was moved away from the mirror plane by Ak = 0.60 mm, the
fringe width decreased n = 1.5 times. Find the wavelength of light.

5.70. Two coherent plane light waves propagating with a diver-
gence angle ¢ < 1 fall almost normally on a screen. The amplitudes
of the waves are equal. Demonstrate that the distance between the
neighbouring maxima on the screen is equal to Az = A/p, where A
is the wavelength.

5.71. Figure 5.14 illustrates the interference experiment with
Fresnel mirrors. The angle between the mirrors is @ = 12’, the
distances from the mirrors’ intersection line to the narrow slit S
and the screen Sc are equal to r = 10.0 cm and b = 130 cm respec-
tively. The wavelength of light is A = 0.55 pm. Find:

(a) the width of a fringe on the screen and the number of possible
maxima;
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(b) the shift of the interference pattern on the screen when the
slit is displaced by 6/ = 1.0 mm along the arc of radius r with
centre at the point O;

(¢) at what maximum width 8,,,, of the slit the interference fringes
on the screen are still observed sufficiently sharp.

Y2

5.72. A plane light wave falls on Fresnel mirrors with an angle
a = 2.0’ between them. Determine the wavelength of light if the
width of the fringe on the screen Az = 0.55 mm.

5.73. A lens of diameter 5.0 cm and focal length f = 25.0 cm
was cut along the diameter into two identical halves. In the process,
the layer of the lens ¢ = 1.00 mm in thickness was lost. Then the
halves were put together to form a composite lens. In this focal
plane a narrow slit was placed, emitting monochromatic light with
wavelength A = 0.60 pm. Behind the lens a screen was located at
a distance b = 50 cm from it. Find:

(a) the width of a fringe on the screen and the number of possible
maxima;

(b) the maximum width of the slit §,,,, at which the fringes on the
screen will be still observed sufficiently sharp.

5.74. The distances from a Fresnel biprism to a narrow slit and
a screen are equal to ¢ = 25 cm and b = 100 cm respectively.
The refracting angle of the glass biprism

is equal to 8 = 20'. Find the wavelength __ py==; Se
of light if the width of the fringe on - | 2\l #
the screen is Az = 0.50 mm. A=
5.75. A plane light wave with wa-  — r,// =K
velength A = 0.70 pm falls normally > |8/=}
on the base of a biprism made of glass ™ LE=d1Z Z

(n = 1.520) with vefracting angle 6 = .

—5.0°. Behind the biprism (Fig. 5.15) Fig. 5.15.

there is a plane-parallel plate, with the

space between them filled up with benzene (n' = 1.500). Find the

width of a fringe on the screen Sc placed behind this system.
5.76. A plane monochromatic light wave falls normally on a

diaphragm with two narrow slits separated by a distance d = 2.5 mm.
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A fringe pattern is formed on a screen placed at a distance [ =
= 100 em behind the diaphragm. By what distance and in which
direction will these fringes be displaced when one of the slits is
covered by a glass plate of thickness A = 10 pm? ’

5.77. Figure 5.16 illustrates an interferometer used in measure-
ments of refractive indices of transparent substances. Here § is

/ /4 Se K

S py S

N

2

Fig. 5.16.

a narrow slit illuminated by monochromatic light with wavelength
A = 589 nm, 7 and 2 are identical tubes with air of length I =
= 10.0 cm each, D is a diaphragm with two slits. After the air
in tube 7 was replaced with ammonia gas, the interference pattern
on the screen Sc¢ was displaced upward by N = 17 fringes. The re-
fractive index of air is equal to n = 1.000277. Determine the refrac-
tive index of ammonia gas.

5.78. An electromagnetic wave falls normally on the boundary
between two isotropic dielectrics with refractive indices n, and n,.

Making use of the continuity condition for the tangential com-
ponents, E and H across the boundary, demonstrate that at the interface
the electric field vector E .

(a) of the transmitted wave experiences no phase jump;

(b) of the reflected wave is subjected to the phase jump equal to o
if it is reflected from a medium of higher optical density.

5.79. A parallel beam of white light falls on a thin film whose
refractive index is equal to » = 1.33. The angle of indices is 6, =
= 52°. What must the film thickness be equal to for the reflected
light to be coloured yellow (A = 0.60 pm) most intensively?

5.80. Find the minimum thickness of a film with refractive index
1.33 at which light with wavelength 0.64 pm experiences maximum
reflection while light with wavelength 0.40 pm is not reflected at
all. The incidence angle of light is equal to 30°.

5.81. To decrease light losses due to reflection from the glass
surface the latter is coated with a thin layer of substance whose
refractive index n’ = y7, where n is the refractive index of the
glass. In this case the amplitudes of electromagnetic oscillations
reflected from both coated surfaces are equal. At what thickness of
that coating is the glass reflectivity in the direction of the normal
equal to zero for light with wavelength A?

5.82. Diffused monochromatic light with wavelength A = 0.60 pm
falls on a thin film with refractive index n = 1.5. Determine the
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film thickness if the angular separation of neighbouring maxima
observed in reflected light at the angles close to © = 45° to the
normal is equal to 60 = 3.0°.

5.83. Monochromatic light passes through an orifice in a screen Sc¢
(Fig. 5.17) and being reflected from a thin transparent plate P
produces fringes of equal inclination

on the screen. The thickness of the Se P)
plate is equal to d, the distance be- ,>
tween the plate and the screen is I,

the radii of the ith and kth dark rings "/ﬁ\

are r; and r,. Find the wavelength of M\V/
light taking into account that ripkl. |
] — ]

9.84. A plane monochromatic light
wave with wavelength A falls on the Fig. 5.17.
surface of a glass wedge whose faces
form an angle @ < 1. The plane of incidence is perpendicular to
the edge, the angle of incidence is 8,. Find the distance between
the neighbouring fringe maxima on the screen placed at right
angles to reflected light.

5.85. Light with wavelength A = 0.55 pm from a distant point
source falls normally on the surfaceofa glass wedge. A fringe pattern
whose neighbouring maxima on the surface of the wedge are separat-
ed by a distance Az = 0.21 mm is observed in reflected light. Find:

(a) the angle between the wedge faces;

(b) the degree of light monochromatism (AA/A) if the fringes
disappear at a distance I~ 1.5 cm from the wedge’s edge.

5.86. The convex surface of a plano-convex glass lens comes into
contact with a glass plate. The curvature radius of the lens’s convex
surface is R, the wavelength of light is equal to A. Find the width
Ar of a Newton ring as a function of its radius r in the region where
Ar <« r.

5.87. The convex surface of a plano-convex glass lens with curva-
ture radius R = 40 cm comes into contact with a glass plate.
A certain ring observed in reflected light has a radius r = 2.5 mm.
Watching the given ring, the lens was gradually removed from the
plate by a distance Ak = 5.0 um. What has the radius of that ring
become equal to? '

5.88. At the crest of a spherical surface of a plano-convex lens
there is a ground-off plane spot of radius r, = 3.0 mm through
which the lens comes into contact with a glass plate. The curvature
radius of the lens’s convex surface is equal to B = 150 cm. Find
the radius of the sixth bright ring when observed in reflected light
with wavelength A = 655 nm.

9.89. A plano-convex glass lens with curvature radius of spherical
surface R = 12.5 cm is pressed against a glass plate. The diameters
of the tenth and fifteenth dark Newton’s rings in reflected light are
equal to d; = 1.00 mm and d, = 1.50 mm. Find the wavelength
of light.
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5.90. Two plano-convex thin glass lenses are brought into contact
with their spherical surfaces. Find the optical power of such a system
if in reflected light with wavelength A = 0.60 pm the diameter of
the fifth bright ring is d = 1.50 mm.

5.91. Two thin symmetric glass lenses, one biconvex and the
other biconcave, are brought into contact to make a system with
optical power @ = 0.50 D. Newton's rings are observed in reflected
light with wavelength 4 = 0.61 pm. Determine:

(a) the radius of the tenth dark ring;

(b) how the radius of that ring will change when the space between
the lenses is filled up with water.

5.92. The spherical surface of a plano-convex lens comes into
contact with a glass plate. The space between the lens and the plate
is filled up with carbon dioxide. The refractive indices of the lens,
carbon dioxide, and the plate are equal to n, = 1.50, n, = 1.63,
and ry; = 1.70 respectively. The curvature radius of thesplerical
surface of the lens is equal to R = 100 cm. Determine the radius
of the fifth dark Newton's ring in reflected light with wavelength
A =050 pm.

5.93. In a two-beam interferometer the orange mercury line
composed of two wavelengths A, = 576.97 nm and A, = 579.03 nm
is employed. What is the least order of interference at which the
sharpness of the fringe pattern is the worst?

5.94. In Michelson’s interferometer the yellow sodium line com-
posed of two wavelengths A, = 589.0 nm and A, = 589.6 nm was
used. In the process of translational displacement of one of the
mirrors the interference pattern vanished periodically (why?). Find
the displacement of the mirror between two successive appearances
of the sharpest pattern.

5.95. When a Fabry-Perot étalon is illuminated by monochromatic
light with wavelength A an interference pattern, the system of con-

\7&: al \

Fig. 5.18.

centric rings, appears in the focal plane of a lens (Fig. 5.18). The
thickness of the étalon is equal to d. Determine how
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(a) the position of rings;

(b) the angular width of fringes
depends on the order of interference.

5.96. For the Fabry-Perot étalon of thickness d = 2.5 cm find:

(a) the highest order of interference of light with wavelength
A = 0.50 pm;

(b) the dispersion region AA, i.e. the spectral interval of wave-
lengths, within which there is still no overlap with other orders of
interference if the observation is carried out approximately at
wavelength A = 0.50 pm.

5.3. DIFFRACTION OF LIGHT
e Radius of the periphery of the kth Fresnel zone:

ab
rk:‘l/‘k}\.m—,k:1,2,3,.-., (5.33)

e Cornu's spiral (Fig. 5.19). The numbers along that spiral correspond to
the values of parameter v. In the case of a plane wave v = z}/ 26}, where =
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Fig. 5.19.

and b are the distances defining the position of the element dS of a wavefront
If'ielatlve to the observation point P as shown in the upper left corner of the
gure.
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e Fraunhofer diffraction produced by light falling normally from a slit.
Condition of intensity minima:

bsin®=-+k\, k=123, ... (5.3b)
where b is the width of the slit, 8 is the diffraction angle.

e Diffraction grating, with light falling normally. The main Fraunhofer
maxima appear under the condition

dsin 0= +k\, k=0,1,2, ..., (5.3¢)
the condition of additional minima:

asin 0==x 21, (5.3d)
where K’ = 1, 2, ..., except for 0, N, 2N, ... .
e Angular dispersion of a diffraction grating:
60 k
D=8 T Gcosd - (5-3)
e Resolving power of a diffraction grating:
A
R=—g-=kN, (5.3f)
where N is the number of lines of the grating.
e Resolving power of an objective
1 D
R=%¢ = T2 (5-39)

where &y is the least angular separation resolved by the objective, D is the
diameter of the objective.

e Bragg’s equation. The condition of diffraction maxima:
2d sin o = kA, (5.3h)

where d is the interplanar distance, o is the glancing angle, k=1, 2,3, ... .

5.97. A plane light wave falls normally on a diaphragm with
round aperture opening the first N Fresnel zones for a point P on
a screen located at a distance b from the diaphragm. The wave-
length of light is equal to A. Find the intensity of light 7, in front
of the diaphragm if the distribution of intensity of light 7 (r) on the
screen is known. Here r is the distance from the point P.

5.98. A point source of light with wavelength 4 = 0.50 pm is
located at a distance a = 100 cm in front of a diaphragm with
round aperture of radius r = 1.0 mm. Find the distance b between
the diaphragm and the observation point for which the number of
Fresnel zones in the aperture equals & = 3.

5.99. A diaphragm with round aperture, whose radius r can be
varied during the experiment, is placed between a point source of
light and a screen. The distances from the diaphragm to the source
and the screen are equal to @ = 100 cm and b = 125 cm. Determine
the wavelength of light if the intensity maximum at the centre of
the diffraction pattern of the screen is observed at r; = 1.00 mm
and the next maximum at r, = 1.29 mm.
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9.100. A plane monochromatic light wave with intensity 7, falls
normally on an opaque screen with a round aperture. What is the inten-
sity of light I behind the screen at the point for which the aperture

(a) is equal to the first Fresnel zone; to the internal half of the
first zone;

(b) was made equal to the first Fresnel zone and then half of it
was closed (along the diameter)?

9.101. A plane monochromatic light wave with intensity I,
falls normally on an opaque disc closing the first Fresnel zone for
the observation point P. What did the intensity of light I at the
point P become equal to after

(a) half of the disc (along the diameter) was removed;

(b) half of the external half of the first Fresnel zone was removed
(along the diameter)?

5.102. A plane monochromatic light wave with intensity I,
falls normally on the surfaces of the opaque screens shown in
Fig. 5.20. Find the intensity of light I at a point P

el
22, & [

Fig. 5.20.

(a) located behind the corner points of screens 7-3 and behind
the edge of half-plane 4;

(b) for which the rounded-off edge of screens 5-8 coincides with
the boundary of the first Fresnel zone.

Derive the general formula describing ‘ J ‘/‘w ¢
the results obtained for screens 7-4; the
same, for screens 5-8.

% ] "
7 // i
5.103. A plane light wave with wave- 3% //m// ///2,
b

length A = 0.60 pum falls normally on a
sufficiently large glass plate having a round !
recess on the opposite side (Fig. 5.21). For l
the observation point P that recess corres- p
ponds to the first one and a half Fresnel m
zones. Find the depth & of the recess at 7
which the intensity of light at the point P is Fig. 5.24.

(a) maximum;

(b) minimum;

(c) equal to the intensity of incident light.
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5.104. A plane light wave with wavelength A and intensity I,
falls normally on a large glass plate whose opposite side serves as
an opaque screen with a round aperture equal to the first Fresnel
zone for the observation point P. In the middle of the aperture
there is a round recess equal to half the Fresnel zone. What must
the depth % of that recess be for the intensity of light at the point
P to be the highest? What is this intensity equal to?

5.105. A plane light wave with wavelength A = 0.57 pm {falls
normally on a surface of a glass (n = 1.60) disc which shuts one
and a half Fresnel zones for the observation point P. What must
the minimum thickness of that disc be for the intensity of light
at the point P to be the highest? Take into account the interference
of light on its passing through the disc.

5.106. A plane light wave with wavelength A= 0.54 um goes
through a thin converging lens with focal length f = 50 ecm and
an aperture stop fixed immediately after the lens, and reaches
a screen placed at a distance b = 75 cm from the aperture stop.
At what aperture radii has the centre of the diffraction pattern
on the screen the maximum illuminance?

5.107. A plane monochromatic light wave falls normally on
a round aperture. At a distance b = 9.0 m from it there is a screen
showing a certain diffraction pattern. The aperture diameter was
decreased m = 3.0 times. Find the new distance b’ at which the
screen should be positioned to obtain the diffraction pattern similar
to the previous one but diminished m times.

5.108. An opaque ball of diameter D =40 mm is placed between
a source of light with wavelength A = 0.55 pm and a photographic
plate. The distance between the source and the ball is equal to
a = 12 m and that between the ball and the photographic plate
is equal to b = 18 m. Find:

(a) the image dimension y’ on the plate if the transverse dimension
of the source is y = 6.0 mm;

(b) the minimum height of irregularities, covering the surface
of the ball at random, at which the ball obstructs light.

Note. As calculations and experience show, that happens when
the height of irregularities is comparable
with the width of the Fresnel zone along + + *)\‘ +
which the edge of an opaque screen passes.

5.109. A point source of moncchromatic {# % " 7
light is positioned in front of a zone plate # , ", a0
at a distance ¢ = 1.5 m from it. The image -
of the source is formed at a distance
b =1.0 m from the plate. Find the focal
length of the zone plate.

5.110. A plane light wave with wave- Fig. 5.22.
length A =0.60 pm and intensity I, falls
normally on a large glass plate whose side view is shown in
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Fig. 5.22. At what height & of the ledge will the intensity of light
at points located directly below be

(a) minimum;
d§b) twice as low as I, (the losses due to reflection are to be neglect-
ed).
5.111. A plane monochromatic light wave falls normally on an
opaque half-plane. A screen is located at a distance b = 100 cm
behind the half-plane. Making use of the Cornu spiral (Fig. 5.19), find:

(a) the ratio of intensities of the first maximum and the neighbour-
ing minimum,;

(b) the wavelength of light if the first two maxima are separated
by a distance Az = 0.63 mm.

5.112. A plane light wave with wavelength 0.60 pm falls normally
on a long opaque strip 0.70 mm wide. Behind it a screen is placed
at a distance 100 cm. Using Fig. 5.19, find the ratio of intensities
of light in the middle of the diffraction pattern and at the edge of
the geometrical shadow.

5.113. A plane monochromatic light wave falls normally on a long
rectangular slit behind which a screen is positioned at a distance
b = 60 cm. First the width of the slit was adjusted so that in the
middle of the diffraction pattern the lowest minimum was observed.
After widening the slit by A2 = 0.70 mm, the next minimum was
obtained in the centre of the pattern. Find the wavelength of light.

5.114. A plane light wave with wavelength A = 0.65 pm falls
normally on a large glass plate whose opposite side has a longrectan-
gular recess 0.60 mm wide. Using Fig. 5.19,
find the depth % of the recess at which the ‘ * *A* w *
diffraction pattern on the screen 77 cm (7 o 7
away from the plate has the maximum Ly X
illuminance at its centre. —— l

5.115. A plane light wave with wave-
length A = 0.65 pm falls normally on a
large glass plate whose opposite side has

V

!
|
{
| b
I
|
|

|
|
!
a ledge and an opaque strip of width i
a = 0.30 mm (Fig. 5.23). A screen is placed I 2 l
at a distance b = 110 cm from the .. U >
plate. The height 2 of the ledge is such I T
that the intensity of light at point 2 of the Fig. 5.23.

screen is the highest possible. Making use

of Fig. 5.19, find the ratio of intensities at points 7 and 2.
5.116. A plane monochromatic light wave of intensity 7, falls

normally on an opaque screen with a long slit having a semicircular

7

i %
77, ,p«//// 77/ %7 Y “s
Z " 7.

Fig. 5.24. Fig. 5.25.

220

cut on one side (Fig. 5.24). The edge of the cut coincides with the
boundary line of the first Fresnel zone for the observation point P.
The width of the slit measures 0.90 of the radius of the cut. Using
Fig. 5.19, find the intensity of light at the point P.

5.117. A plane monochromatic light wave falls normally on an
opaque screen with a long slit whose shape is shown in Fig. 5.25.
Making use of Fig. 5.19, find the ratio of intensities of light at
points 1, 2, and 8 located behind the screen at equal distances from
it. For point 8 the rounded-off edge of the slit coincides with the
boundary line of the first Fresnel zone.

5.118. A plane monochromatic light wave falls normally on an
opaque screen shaped as a long strip with a round hole in the middle.
For the observation point P the hole corresponds to half the Fresnel
zone, with the hole diameter being n = 1.07 times less than the
width of the strip. Using Fig. 5.19, find the intensity of light at the
point P provided that the intensity of the incident light is equal
to I,

5.119. Light with wavelength A falls normally on a long rectangu-
lar slit of width b. Find the angular distribution of the intensity
of light in the case of Fraunhofer diffraction, as well as the angular
position of minima.

5.120. Making use of the result obtained in the foregoing problem,
find the conditions defining the angular position of maxima of the
first, the second, and the third order.

5.121. Light with wavelength A = 0.50 pum falls on a slit of
width b = 10 pm at an angle 6, = 30° to its normal. Find the
angular position of the first minima located on both sides of the
central Fraunhofer maximum.

5.122. A plane light wave with wavelength A = 0.60 pm falls
normally on the face of a glass wedge with refracting angle ® = 15°.
The opposite face of the wedge is opaque and has a slit of width
b = 10 pm parallel to the edge. Find:

(a) the angle AB between the direction to the Fraunhofer maximum
of zeroth order and that of incident light;

(b) the angular width of the Fraunhofer maximum of the zeroth
order.

5.123. A monochromatic beam falls on a reflection grating with
period d == 1.0 mm at a glancing angle a, = 1.0°. When it is dif-
fracted at a glancing angle o = 3.0° a Fraunhofer maximum of
second order occurs. Find the wavelength of light.

5.124. Draw the approximate diffraction pattern originating in
the case of the Fraunhofer diffraction from a grating consisting
of three identical slits if the ratio of the grating period to the slit
width is equal to

(a) two;

(b) three.

5.125. With light falling normally on a diffraction grating, the
angle of diffraction of second order is equal to 45° for a wavelength
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A, = 0.65 um. Find the angle of diffraction of third order for a wave
length A, = 0.50 pm.

5.126. Light with wavelength 535 nm falls normally on a diffrac-
tion grating. Find its period if the diffraction angle 35°corresponds
to one of the Fraunhofer maxima and the highest order of spectrum
is equal to five.

9.127. Find the wavelength of monochromatic light falling nor-
mally on a diffraction grating with period d = 2.2 um if the angle
between the directions to the Fraunhofer maxima of the first and
the second order is equal to A8 = 15°,

5.128. Light with wavelength 530 nm falls on a transparent
diffraction grating with period 1.50 um. Find the angle, relative
to the grating normal, at which the Fraunhofer maximum of highest
order is observed provided the light falls on the grating

(a) at right angles;

(b) at the angle 60° to the normal.

5.129. Light with wavelength A = 0.60 pm falls normally on
a diffraction grating inscribed on a plane surface of a plano-convex
cylindrical glass lens with curvature radius R = 20 cm. The period
of the grating is equal to d = 6.0 um. Find the distance between
the principal maxima of first order located symmetrically in the
focal plane of that lens.

5.130. A plane light wave with wavelength A = 0.50 pm falls
normally on the face of a glass wedge with an angle ® = 30°. On the
opposite face of the wedge a transparent diffraction grating with
period d = 2.00 pm is inscribed, whose lines are parallel to the
wedge’s edge. Find the angles that the direction of incident light
forms with the directions to the principal Fraunhofer maxima of
the zero and the first order. What is the highest order of the spect-
rum? At what angle to the direction of incident light is it observed?

5.131. A plane light wave with wavelength A falls normally on
a phase diffraction grating whose side view is shown in Fig. 5.26.
The grating is cut on a glass plate with refractive index r. Find
the depth & of the lines at which the intensity of the central Fraun-
hofer maximum is equal to zero. What is in this case the diffraction
angle corresponding to the first maximum?

IR IRISEEEE —
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Fig. 5.26. Fig. 5.27.

5.132. Figure 5.27 illustrates an arrangement employed in obser-
vations of diffraction of light by ultrasound. A plane light wave
with wavelength A = 0.55 pm passes through the water-filled tank T
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in which a standing ultrasonic wave is sustained at a frequency
v = 4.7 MHz. As a result of diffraction of light by the optically
inhomogeneous periodic structure a diffraction spectrum can be
observed in the focal plane of the objective O with focal length
f = 35 cm. The separation between neighbouring maxima is Az =
= 0.60 mm. Find the propagation velocity of ultrasonic oscillations
in water.

5.133. To measure the angular distance ¢ between the components
of a double star by Michelson’s method, in front of a telescope’s
lens a diaphragm was placed, which had two narrow parallel slits
separated by an adjustable distance d. While diminishing d, the
first smearing of the pattern was observed in the focal plane of the
objective at d = 95 cm. Find v, assuming the wavelength of light
to be equal to A = 0.55 pm.

5.134. A transparent diffraction grating has a period ¢ = 1.50 pm.
Find the angular dispersion D (in angular minutes per nanometres)
corresponding to the maximum of highest order for a spectral line
of wavelength A = 530 nm of light falling on the grating

(a) at right angles;

(b) at the angle 8, = 45° to the normal.

5.135. Light with wavelength A falls on a diffraction grating at
right angles. Find the angular dispersion of the grating as a function
of diffraction angle 6.

5.136. Light with wavelength A = 589.0 nm falls normally on
a diffraction grating with period d = 2.5 pm, comprising N =
= 10 000 lines. Find the angular width of the diffraction maximum
of second order.

5.137. Demonstrate that when light falls on a diffraction grating
at right angles, the maximum resolving power of the grating cannot
exceed the value I/A, where ! is the width of the grating and A is
the wavelength of light.

5.138. Using a diffraction grating as an example, demonstrate
that the frequency difference of two maxima resolved according to
Rayleigh's criterion is equal to the reciprocal of the difference of
propagation times of the extreme interfering oscillations, i.e. v =
= 1/6¢.

5.139. Light composed of two spectral lines with wavelengths
600.000 and 600.050 nm falls normally on a diffraction grating
10.0 mm wide. At a certain diffraction angle 0 these lines are close
to being resolved (according to Rayleigh’s criterion). Find 6.

5.140. Light falls normally on a transparent diffraction grating
of width I = 6.5 cm with 200 lines per millimetre. The spectrum
under investigation includes a spectral line with A = 670.8 nm
consisting of two components differing by A = 0.015 nm. Find:

(a) in what order of the spectrum these components will be resolv-
ed;

(b) the least difference of wavelengths that can be resolved by
this grating in a wavelength region A ~ 670 nm.
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5.141. With light falling normally on a transparent diffraction
grating 10 mm wide, it was found that the components of the yellpw
line of sodium (589.0 and 589.6 nm) are resolved beginning with
the fifth order of the spectrum. Evaluate:

(a) the period of this grating; ‘ .

(b) what must be the width of the grating with the same period
for a doublet A = 460.0 nm whose components differ by 0.13 nm
to be resolved in the third order of the spectrum.

5.142. A transparent diffraction grating of a quartz spectrograph
is 25 mm wide and has 250 lines per millimetre. The focal length
of an objective in whose focal plane a photographic plate is located
is equal to 80 cm. Light falls on the grating at right angles. The
spectrum under investigation includes a doublet with components
of wavelengths 310.154 and 310.184 nm. Determine:

(a) the distances on the photographic plate between the components
of this doublet in the spectra of the first and the second order;

(b) whether these components will be resolved in these orders
of the spectrum. ’

5.143. The ultimate resolving power A/8A of the spectrograph’s
trihedral prism is determined by diffraction .of li.ght at the prism
edges (as in the case of a slit). When the prism is orlentgd to the
least deviation angle in accordance with Rayleigh’s criterion,

AMOA = b | dr/dh |,

where b is the width of the prism’s base (Fig. 5.28), and dn/d\ is the
dispersion of its material. Derive this formula.

5.144. A spectrograph’s trihedral prism is manufactured from
glass whose refractive index varies with wavelength asn=A - B/A?,
where 4 and B are constants, with B being equalto 0.010 pm?.
Making use of the formula from the foregoing problem, find:

(a) how the resolving power of the prism depends on A; calculate
the value of A/6A in the vicinity of A; = 434 nm and A, = 656 nm
if the width of the prism’s base is b = 5.0 cm;

(b) the width of the prism’s base capable of resolving the yellow
doublet of sodium (589.0 and 589.6 nm).

5.145. How wide is the base of a trihedral prism which has.the
same resolving power as a diffraction grating with 10 000 lines
in the second order of the spectrum if|dn/dA| = 0.10 um-17
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5.146. There is a telescope whose objective has a diameter D =
= 5.0 cm. Find the resolving power of the objective and the mini-
mum separation between two points at a distance ! = 3.0 km from
the telescope, which it can resolve (assume A = 0.55 pm).

5.147. Calculate the minimum separation between two points
on the Moon which can be resolved by a reflecting telescope with
mirror diameter 5 m. The wavelength of light is assumed to be equal
to A = 0.55 pm.

5.148. Determine the minimum multiplication of a telescope
with diameter of objective D = 5.0 cm with which the resolving
power of the objective is totally employed if the diameter of the
eye’s pupil is dy, = 4.0 mm.

5.149. There is a microscope whose objective’s numerical aperture
is sin @ = 0.24, where a is the half-angle subtended by the objec-
tive’s rim. Find the minimum separation resolved by this microscope
when an object is illuminated by light with wavelength A = 0.55 pm.

9.150. Find the minimum magnification of a microscope, whose
objective’s numerical aperture is sin o = 0.24, at which the resolv-
ing power of the objective is totally employed if the diameter of the
eye’s pupil is d;, = 4.0 mm.

5.151. A beam of X-rays with wavelength A falls at a glancing
angle 60.0° on a linear chain of scattering centres with period a.
Find the angles of incidence corres-
ponding to all diffraction maxima - 4
if A = 2a/5. ’

5.152. A beam of X-rays with
wavelength A = 40 pm falls nor-
mally on a plane rectangular array
of scattering centres and produces e
a system of diffraction maxima
(Fig. 5.29) on a plane screen re-
moved from the arrayby a distance
1 =10 cm. Find the array periods a .
and b along the z and y axes if the Fig. 5.29.
distances between symmetrically
located maxima of second order are equal to Az = 60 mm (along
the z axis) and Ay = 40 mm (along the y axis).

5.153. A beam of X-rays impinges on a three-dimensional rectan-
gular array whose periods are a, b, and c. The direction of the inci-
dent beam coincides with the direction along which the array period
is equal to a. Find the directions to the diffraction maxima and the
wavelengths at which these maxima will be observed.

5.154. A narrow beam of X-rays impinges on the natural facet
of a NaCl single crystal, whose density is p = 2.16 g/cm?® at a glanc-
ing angle o = 60.0°. The mirror reflection from this facet produces
a maximum of second order. Find the wavelength of radiation.

9.155. A beam of X-rays with wavelength A = 174 pm falls on
the surface of a single crystal rotating about its axis which is paral-

.
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lel to its surface and perpendicular to the direction of the incident
beam. In this case the directions to the maxima of second and third
order from the system of planes parallel to the surface of the single
crystal form an angle a = 60° between them. Find the corresponding
interplanar distance.

5.156. On transmitting a beam of X-rays with wavelength A =
= 17.8 pm through a polycrystalline specimen a system of diffrac-
tion rings is produced on a screen located at a distance 1 =15 cm
from the specimen. Determine the radius of the bright ring corres-
ponding to second order of reflection from the system of planes with
interplanar distance d = 155 pm.

5.4. POLARIZATION OF LIGHT

o Degree of polarization of light:

Imax““Imln
P= Imax+1min ¢ (5.4a)
e Malus’s law:
I = I,cos? . (5.4b)
e Brewster’'s law:
tan 05 = nyf/n,. (5.4¢)

e Fresnel equations for intensity of light reflected at the boundary be-
tween two dielectrics:

. sin? (6, —0,) tan? (6, —0,) 5 4d

L=l 5,76y Tan® (0,16, °* (5.4d)

where [ and J, are the intensities of incident light whose electric vector oscil-
lations are respectively perpendicular and parallel to the plane of incidence-

e A crystalline plate between two polarizers P and P’. If the angle between
the plane of polarizer P and the optical axis 00’ of the plate is equal to 45°
the intensity I’ of light which passes through the polarizer P’ turns out to be
either maximum or minimum under the following conditions:

I'y=1Iy

P and B | 5= 2k , S=@k+1n
parallel I =max I; =min (5.4¢)
crossed I =min I =max

Here 8 = 2n (ng — n,)d/A is the phase difference between the ordinary and
extraordinary rays, k= 0, 1, 2, .
e Natural and magnetic rotation of the plane of polarization:

Prat =0l, (Pmagn'—"Vle (5.41)

where o is the rotation constant, V is Verdet's constant.

5.157. A plane monochromatic wave of natural light with inten-
sity I, falls normally on a screen composed of two touching Polaroid
half-planes. The principal direction of one Polaroid is parallel,
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and of the other perpendicular, to the boundary between them.
What kind of diffraction pattern is formed behind the screen? What
is the intensity of light behind the screen at the points of the plane
perpendicular to the screen and passing through the boundary
between the Polaroids?

5.158. A plane monochromatic wave of natural light with inten-
sity I, falls normally on an opaque screen with round hole corres-
ponding to the first Fresnel zone for the observation point P. Find
the intensity of light at the point P after the hole was covered with
two identical Polaroids whose principal directions are mutually
perpendicular and the boundary between them passes

(a) along the diameter of the hole;

(b) along the circumference of the circle limiting the first half
of the Fresnel zone.

5.159. A beam of plane-polarized light falls on a polarizer which
rotates about the axis of the ray with angular velocity @ = 21 rad/s.
Find the energy of light passing through the polarizer per one revo-
lution if the flux of energy of the incident ray is equal to @, =
= 4.0 mW.

5.160. A beam of natural light falls on a system oi N = 6 Nicol
prisms whose transmission planes are turned each through an angle
@ = 30° with respect to that of the foregoing prism. What fraction
of luminous flux passes through this system?

5.161. Natural light falls on a system of three identical in-line
Polaroids, the principal direction of the middle Polaroid forming
an angle ¢ = 60° with those of two other Polaroids. The maximum
transmission coefficient of each Polaroid is equal to T = 0.81 when
plane-polarized light falls on them. How many times will the
intensity of the light decrease after its passing through the
system?

5.162. The degree of polarization of partially polarized light is
P = 0.25. Find the ratio of intensities of the polarized component
of this light and the natural component.

5.163. A Nicol prism is placed in the way of partially polarized
beam of light. When the prism is turned from the position of maxi-
mum transmission through an angle ¢ = 60°, the intensity of trans-
mitted light decreased by a factor of m = 3.0. Find the degree of
polarization of incident light.

5.164. Two identical imperfect polarizers are placed in the way
of a natural beam of light. When the polarizers' planes are parallel,
the system transmits n = 10.0 times more light than in the
case of crossed planes. Find the degree of polarization of light
produced

(a) by each polarizer separately;

(b) by the whole system when the planes of the polarizers are
parallel.

5.165. Two parallel plane-polarized beams of light of equal inten-
sity whose oscillation planes NV; and IV, form a small angle ¢ between
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them (Fig. 5.30) fall on a Nicol prism. To equalize the intensities
of the beams emerging behind the prism, its principal direction N
must be aligned along the bisecting line 4 or B. Find the value of
the angle @ at which the rotation of the Nicol prism through a small
angle 8¢ < ¢ from the position A results in the fractional change
of intensities of the beams AZ/I by the value , = 100 times exceeding
that resulting due to rotation through the same angle from the
position B.

5.166. Resorting to the Fresnel equations, demonstrate that
light reflected from the surface of dielectric will be totally polarized
if the angle of incidence 0, satisfies the condition tan 8, = n, where n
is the refractive index of the dielectric. What is in this case the
angle between the reflected and refracted rays?
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5.167. Natural light falls at the Brewster angle on the surface
of glass. Using the Fresnel equations, find

(a) the reflection coefficient;

(b) the degree of polarization of refracted light.

5.168. A plane beam of natural light with intensity 7, falls on
the surface of water at the Brewster angle. A fraction p = 0.039
of luminous flux is reflected. Find the intensity of the refracted
beam.

5.169. A beam of plane-polarized light falls on the surface of water
at the Brewster angle. The polarization plane of the electric vector
of the electromagnetic wave makes an angle ¢ = 45° with the inci-
dence plane. Find the reflection coefficient,

5.170. A narrow beam of natural light falls on the surface of
a thick transparent plane-parallel plate at the Brewster angle.
As a result, a fraction p = 0.080 of luminous flux is reflected from
its top surface. Find the degree of polarization of beams 7-4 (Fig. 5.31)

5.171. A narrow beam of light of intensity I, falls on a plane-
parallel glass plate (Fig. 5.31) at the Brewster angle. Using the
Fresnel equations, find:

(a) the intensity of the transmitted beam I, if the oscillation
plane of the incident plane-polarized light is perpendicular to the
incidence plane;
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(b) the degree of polarization of the transmitted light if the
light falling on the plate is natural.

5.172. A narrow beam of natural light falls on a set of N thick
plane-parallel glass plates at the Brewster angle. Find:

(a) the degree P of polarization of the transmitted beam;

(b) what P is equal to when ¥ =1, 2, 5, and 10.

5.173. Using the Fresnel equations, find:

(a) the reflection coefficient of natural light falling normally
on the surface of glass;

(b) the relative loss of luminous flux due to reflections of a paraxial
ray of natural light passing through an aligned optical system compris-
ing five glass lenses (secondary reflections of light are to be neglected).

5.174. A light wave falls normally on the surface of glass coated
with a layer of transparent substance. Neglecting secondary reflec-
tions, demonstrate that the amplitudes of light waves reflected
from the two surfaces of such a laver will be equal under the condi-

tion n’ = Y/, where n’ and n are the refractive indices of the layer
and the glass respectively.

5.175, A beam of natural light falls on the surface of glass at an
angle of 45°. Using the Fresnel equations, find the degree of polari-
zation of

(a) reflected light;

(b) refracted light.

5.176. Using Huygens’s principle, construct the wavefronts and
the propagation directions of the ordinary and extraordinary rays
in a positive uniaxial crystal whose
optical axis }

i

(a) is perpendicular to the inci- [
dence plane and parallel to the
surface of the crystal; l !

(b) lies in the incidence plane i
and is parallel to the surface of :
the crystal;

{c) lies in the incidence plane at
an angle of 45° to the surface of
the crystal, and light falls at right
angles to the optical axis.

5.177. A narrow beam of na-
tural light with wavelength A =
= 589 nm falls normally on the surface of a Wollaston polarizing
prism made of Iceland spar as shown in Fig. 5.32. The optical axes
of the two parts of the prism are mutually perpendicular. Find the
angle 8 between the directions of the beams behind the prism if the
angle 0 is equal to 30°.

5.178. What kind of polarization has a plane electromagnetic
wave if the projections of the vector E on the x and y axes are per-
pendicular to the propagation direction and are defined by the
following equations:

Y

Fig. 5.32.
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(a) Ex = E cos (ot — kz), E, = E sin (ot — kz);

(b) E, = E cos (ot — kz), E, = E cos (ot — kz + n/4);

() E, = E cos (ot — kz), E, = E cos (ot — kz + n)?

5.179. One has to manufacture a quartz plate cut parallel to its
optical axis and not exceeding 0.50 mm in thickness. Find the maxi-
mum thickness of the plate allowing plane-polarized light with
wavelength A = 589 nm

(a) to experience only rotation of polarization plane;

(b) to acquire circular polarization
after passing through that plate.

5.180. A quartz plate cut parallel to the optical axis is placed
between two crossed Nicol prisms. The angle between the principal
directions of the Nicol prisms and the plate is equal to 45°. The thick-
ness of the plate is d = 0.50 mm. At what wavelengths in the inter-
val from 0.50 to 0.60 pm is the intensity of light which passed
through that system independent of rotation of the rear prism?
The difference of refractive indices for ordinary and extraordinary
rays in that wavelength interval is assumed to be Ar = 0.0090.

5.181. White natural light falls on a system of two crossed Nicol
prisms having between them a quartz plate 1.50 mm thick, cut
parallel to the optical axis. The axis of the plate forms an angle of
45° with the principal directions of the Nicol prisms. The light
transmitted through that system was split into the spectrum. How
many dark fringes will be observed in the wavelength interval
from 0.55 to 0.66 pm? The difference of refractive indices for ordinary
and extraordinary rays in that wavelength interval is assumed
to be equal to 0.0090.

5.182. A crystalline plate cut parallel to its optical axis is 0.25 mm
thick and serves as a quarter-wave plate for a wavelength A =
= 530 nm. At what other wavelengths of visible spectrum will
it also serve as a quarter-wave plate? The difference of refractive
indices for extraordinary and ordinary rays is assumed to be constant
and equal to n, — n, = 0.0090 at all wavelengths of the visible
spectrum.

5.183. A quartz plate cut parallel to its optical axis is placed
between two crossed Nicol prisms so that their principle directions
form an angle of 45° with the optical axis of the plate. What is the
minimum thickness of that plate transmitting light of wavelength
Ay = 643 nm with maximum intensity while greatly reducing the
intensity of transmitting light of wavelength A, = 564 nm? The
difference of refractive indices for extraordinary and ordinary rays
is assumed to be equal to rne — r, = 0.0090 for both wavelengths.

5.184. A quartz wedge with refracting angle 8= 3.5° is inserted
between two crossed Polaroids. The optical axis of the wedge is
parallel to its edge and forms an angle of 45° with the principal
directions of the Polaroids. On transmission of light with wavelength
A = 550 nm through this system, an interference fringe pattern is
formed. The width of each fringe is Az = 1.0 mm. Find the dif-

o7y

ference of refractive indices of quartz for ordinary and extraordinary
rays at the wavelength indicated above.

5.185. Natural monochromatic light of intensity./, falls on a sys-
tem of two Polaroids between which a crystalline plate is inserted,
cut parallel to its optical axis. The plate introduces a phase dif-
ference 8 between the ordinary and extraordinary rays. Demonstrate
that the intensity of light transmitted through that system is equal to

]:_%_ Iy(cos? (p—¢') —sin 2¢-sin 29" sin?(§/2)],

where ¢ and ¢’ are the angles between the optical axis of the crystal
and the principal directions of the Polaroids. In particular, consider
the cases of crossed and parallel Polaroids.

5.186. Monochromatic light with circular polarization falls norm-
ally on a crystalline plate cut parallel to the optical axis. Behind
the plate there is a Nicol prism whose principal direction forms an
angle ¢ with the optical axis of the plate. Demonstrate that the
intensity of light transmitted through that system is equal to

I =1,( -+ sin 2¢-sin §),

where § is the phase difference between the ordinary and extraordi-
pary rays which is introduced by the plate.

5.187. Explain how, using a Polaroid and a quarter-wave plate
made of positive uniaxial crystal (n, >n,), to distinguish

(a) light with left-hand circular polarization from that with
right-hand polarization;

(b) natural light from light with circular polarization and from
the composition of natural light and that with circular polarization.

5.188. Light with wavelength XA falls on a system of crossed pola-
rizer P and analyzer A between which a Babinet compensator C
is inserted (Fig. 5.33). The compensa-
tor consists of two quartz wedges with ||
the optical axis of one of them being
parallel to the edge, and of the other,
perpendicular to it. The principal direc-
tions of the polarizer and the analyser
form an angle of 45° with the optical axes
of the compensator. The refracting angle
of the wedges is equal to ® (O« 1) and J
the difference of refractive indices of # & ¢ %
quartz is n, — n,. The insertion of Fig. 5.33.
investigated birefringent sample S, with
the optical axis oriented as shown in the figure, results in dis-
placement of the fringes upward by 6z mm. Find:

(a) the width of the fringe Axz;

(b) the magnitude and the sign of the optical path difference
of ordinary and extraordinary rays, which appears due to the
sample S.
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5.189. Using the tables of the Appendix, calculate the difference
of refractive indices of quartz for light of wavelength A = 589.5 nm
with right-hand and left-hand circular polarizations.

5.190. Plane-polarized light of wavelength 0.59 pm falls on
a trihedral quartz prism P (Fig. 5.34) with refracting angle =
= 30°. Inside the prism light propagates along the optical axis
whose direction is shown by hatching. Behind
the Polaroid Pol an interference pattern of I
bright and dark fringes of width Az =
= 15.0 mm is observed. Find the specific rota- —]
tion constant of quartz and the distribution 9 3
of intensity of light behind the Polaroid. —

5.191. Natural monochromatic light falls /
on a system of two crossed Nicol prisms
between which a quartz plate cut at right ]
angles to its optical axis is inserted. Find ) It
the minimum thickness of the plate at which
this system will transmit = 0.30 of luminous
flux if the specific rotation constant of
quartz is equal to a = 17 ang.deg/mm.

5.192. Light passes through a system of two crossed Nicol prisms
between which a quartz plate cut at right angles to its optical axis
is placed. Determine the minimum thickness of the plate which
allows light of wavelength 436 nm to be completely cut off by the
system and transmits half the light of wavelength 497 nm. The spe-
cific rotation constant of quartz for these wavelengths is equal
to 41.5 and 31.1 angular degrees per mm respectively.

5.193. Plane-polarized light of wavelength 589 nm propagates
along the axis of a cylindrical glass vessel filled with slightly turbid
sugar solution of concentration 500 g/l. Viewing from the side, one
can see a system of helical fringes, with 50 cm between neighbouring
dark fringes along the axis. Explain the emergence of the fringes and
determine the specific rotation constant of the solution.

5.194. A Kerr cell is positioned between two crossed Nicol prisms
so that the direction of electric field E in the capacitor forms an
angle of 45° with the principal directions of the prisms. The capacitor
has the length ! == 10 c¢m and is filled up with nitrobenzene. Light
of wavelength A = 0.50 pm passes through thesystem. Taking
into account that in this case the Kerr constant is equal to B =
= 2.2-10-10 ¢m/V?, find:

(a) the minimum strength of electric field £ in the capacitor at
which the intensity of light that passes through this system is inde-
pendent of rotation of the rear prism;

(b) how many times per second light will be interrupted when
a sinusoidal voltage of frequency v = 10 MHz and strength ampli-
tude E,, = 50 kV/cm is applied to the capacitor.

Note. The Kerr constant is the coefficient B in the equation n, —
— n, = BAE?,

Fig. 5.34.
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5.195. Monochromatic plane-polarized light with angular frequen-
Cy ® passes through a certain substance along a uniform magnetic
field H. Find the difference of refractive indices for right-hand and
left-hand components of light beam with circular polarization if
the Verdet constant is equal to V.

5.196. A certain substance is placed in a longitudinal magnetic
field of a solenoid located between two Polaroids. The length of
the tube with substance is equal to I = 30 cm. Find the Verdet
constant if at a field strength H = 56.5 kA/m the angle of rotation
of polarization plane is equal to ¢, = -+5°10’ for one direction of
the field and to @, = —3°20’, for the opposite direction.

5.197. A narrow beam of plane-polarized light passes through
dextrorotatory positive compound placed into a longitudinal magne-
tic field as shown in Fig. 5.35. Find the angle through which the

H

—l

l

Fig. 5.35.

polarization plane of the transmitted beam will turn if the length
of the tube with the compound is equal to I, the specific rotation
constant of the compound is equal to o, the Verdet constant is V,
and the magnetic field strength is H.

5.198. A tube of length I = 26 cm is filled with benzene and placed
in a longitudinal magnetic field of a solenoid positioned between two
Polaroids. The angle between the principle directions of the Pola-
roids is equal to 45°. Find the minimum strength of the magnetic
field at which light of the wavelength 589 nm propagates through
that system only in one direction (optical valve). What happens if
the direction of the given magnetic field is changed to the opposite
one?

9.199. Experience shows that a body irradiated with light with
circular polarization acquires a torque. This happens because such
a light possesses an angular momentum whose flow density in va-
cuum is equal to M = I/w, where [ is the intensity of light, ® is
the angular oscillation frequency. Suppose light with circular
polarization and wavelength A = 0.70 pum falls normally on a uni-
form black disc of mass m = 10 mg which can freely rotate about
its axis. How soon will its angular velocity become equal to 0w, =
= 1.0 rad/s provided I = 10 W/cm?®?



5.5. DISPERSION AND ABSORPTION OF LIGHT
e Permittivity of substance according to elementary theory of dispersion:

e=1- 2 nretlmey (5.5a)
k

©fp—ow? '

where ny is the concentration of electrons of natural frequency wgy.
e Relation between refractive index and permittivity of suhstance:

n= Ve (5.5b)
e Phase velocity v and group velocity u:
v= olk, u= do/dk. (5.5¢)
e Rayleigh’'s formula:
dv
u=l/—l.7x'. (5.5d)

e Attenuation of a narrow beam of electromagnetic radiation:
I =144, (5.5€)

where p = % -+ %/, p, %, »’ are the coefficients of linear attenuation, absorption,
and scattering.

5.200. A free electron is located in the field of a monochromatic
light wave. The intensity of light is 7 = 150 W/m?, its frequency
is = 3.4-10% s-1, Find:

(a) the electron’s oscillation amplitude and its velocity ampli-
tude;

(b) the ratio F,,/Fe, where F,, and F, are the amplitudes of forces
with which the magnetic and electric components of the light wave
field act on the electron; demonstrate that that ratio is equal to

%v/c, where v is the electron’s velocity amplitude and ¢ is the

velocity of light.

Instruction. The action of the magnetic field component can be
disregarded in the equation of motion of the electron since the calcu-
lations show it to be negligible.

5.201. An electromagnetic wave of frequency ® propagates in
dilute plasma. The free electron concentration in plasma is equal
to n,. Neglecting the interaction of the wave and plasma ions, find:

(a) the frequency dependence of plasma permittivity;

(b) how the phase velocity of the electromagnetic wave depends
on its wavelength A in plasma.

5.202. Find the free electron concentration in ionosphere if its
refractive index is equal to n = 0.90 for radiowaves of frequency
v = 100 MHz.

5.203. Assuming electrons of substance to be free when subjected
to hard X-rays, determine by what magnitude the refractive index
of graphite differs from unity in the case of X-rays whose wavelength
in vacuum is equal to A ==50 pm.
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5.204. An electron experiences a quasi-elastic force kz and a “fric-

tion force” yz in the field of electromagnetic radiation. The E-com-
ponent of the field varies as E = E, cos ot. Neglecting the action
of the magnetic component of the field, find:

(a) the motion equation of the electron;

(b) the mean power absorbed by the electron; the frequency at
which that power is maximum and the expression for the maxi-
mum mean power.

9.205. In some cases permittivity of substance turns out to be a
complex ora negative quantity, and refractive index, respectively,
acomplex (n'=n - ix) or an imaginary (n’ = ix) quantity. Write the
equation of a plane wave for both of
these cases and find out the physical 4
meaning of such refractive indices.

9.206. A sounding of dilute plasma
by radiowaves of various frequencies
reveals that radiowaves with wave-
lengths exceeding A, = 0.75 m expe- ¢’
rience total internal reflection. Find
the free electron concentration in
that plasma.

5.207. Using the definition of the Fig. 5.36.
group velocity u, derive Rayleigh’s
formula (5.5d). Demonstrate that in the vicinity of A = A’ the
velocity u is equal to the segment v’ cut by the tangent of the
curve v (A) at the point A" (Fig. 5.36).

9.208. Find the relation between the group velocity u and phase
velocity v for the following dispersion laws:

(2) voo 1/YA;

(b) v oo k;

() ven 1/

Here A, k, and o are the wavelength, wave number, and angular
frequency.

5.209. In a certain medium the relationship between the group
and phase velocities of an electromagnetic wave has the form uv =
= c*, where c is the velocity of light in vacuum. Find the dependence
of permittivity of that medium on wave frequency, (o).

9.210. The refractive index of carbon dioxide at the wavelengths
509, 534, and 589 nm is equal to 1.647, 1.640, and 1.630 respective-
ly. Calculate the phase and group velocities of light in the vicinity
of A = 534 nm.

9.211. A train of plane light waves propagates in the medium
where the phase velocity v is a linear function of wavelength: v =
= a + bA, where a and b are some positive constants. Demonstrate
that in such a medium the shape of an arbitrary train of light waves
is restored after the time interval © = 1/b.

5.212. A beam of natural light of intensity I, falls on a system
of two crossed Nicol prisms between which a tube filled with certain
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solution is placed in a longitudinal magnetic field of strength H.
The length of the tube is I, the coefficient of linear absorption of
solution is %, and the Verdet constant is V. Find the intensity of
light transmitted through that system.

5.213. A plane monochromatic light wave of intensity I, falls
normally on a plane-parallel plate both of whose surfaces have
a reflection coefficient p. Taking into account maultiple reflections,
find the intensity of the transmitted light if

(a) the plate is perfectly transparent, i.e. the absorption is
absent;

(b) the coefficient of linear absorption is equal to %, and the plate
thickness is d.

5.214. Two plates, one of thickness d;, = 3.8 mm and the other
of thickness d, = 9.0 mm, are manufactured from a certain sub-
stance. When placed alternately in the way of monochromatic
light, the first transmits 1, = 0.84 fraction of luminous flux and
the second, 1, = 0.70. Find the coefficient of linear absorption of
that substance. Light falls at right angles to the plates. The second-
ary reflections are to be neglected.

5.215. A beam of monochromatic light passes through a pile of
N = 5 identical plane-parallel glass plates each of thickmess I =
= 0.50 cm. The coefficient of reflection at each surface of the plates
is p = 0.050. Theratio of the intensity of light transmitted through
the pile of plates to the intensity of incident light is t = 0.55.
Neglecting the secondary reflections of light, find the absorption
coefficient of the given glass.

5.216. A beam of monochromatic light falls normally on the
surface of a plane-parallel plate of thickness I. The absorpticn coeffi-
cient of the substance the plate is made of varies linearly along
the normal to its surface from %; to %,. The coefficient of reflection
at each surface of the plate is equal to p. Neglecting the secondary
reflections, find the transmission coefficient of such a plate.

5.217. A beam of light of intensity 7, falls normally on a trans-
parent plane-parallel plate of thickness I. The beam contains all the
wavelengths in the interval from A, to A, of equal spectral intensity.
Find the intensity of the transmitted beam if in this wavelength
interval the absorption coefficient is a linear function of A, with
extreme values %, and %,. The coefficient of reflection at each surface
is equal to p. The secondary reflections are to be neglected.

5.218. A light filter is a plate of thickness d whose absorption
coefficient depends on wavelength A as

% (A) =a (1 —A/Ag)2cm™t,

where a and A, are constants. Find the passband AMA of this light
filter, that is the band at whose edges the attenuation of light is
times that at the wavelength A,. The coefficient of reflection from
the surfaces of the light filter is assumed to be the same at all wave-
Jengths.
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5.219. A point source of monochromatic light emitting aluminous
flux @ is positioned at the centre of a spherical layer of substance.
The inside radius of the layer is @, the outside one is b. The coeffi-
cient of linear absorption of the substance is equal to x, the reflection
coefficient of the surfaces is equal to p. Neglecting the secondary
reflections, find the intensity of light that passes through that layer.

5.220. How many times will the intensity of a narrow X-ray
beam of wavelength 20 pm decrease after passing through a lead
plate of thickness d = 1.0 mm if the mass absorption coefficient
for the given radiation wavelength is equal to p/p = 3.6 cm?/g?

5.221. A narrow beam of X-ray radiation of wavelength 62 pm
penetrates an aluminium screen 2.6 c¢m thick. How thick must
a lead screen be to attenuate the beam just as much? The mass
absorption coefficients of aluminium and lead for this radiation are
equal to 3.48 and 72.0 cm?/g respectively.

5.222. Find the thickness of aluminium layer which reduces by
half the intensity of a narrow meoenochromatic X-ray beam if the
corresponding mass absorption coefficient is p/p = 0.32 cm?/g.

5.223. How many 50%-absorption layers are there in the plate
reducing the intensity of a narrow X-ray beam n = 50 times?

5.6. OPTICS OF MOVING SOURCES
e Doppler effect for <« c:

Aw v
'm—=-c—' cos 6 (5-68)

w.here.u is the velocity of a source, 0 is the angle batween the source’s motion
direction and the observation line.
e Doppler effect in the general case:

VR
0—001_5008 0" (5-6b)
where B = v/c.

e 10 =0, the Doppler effect is called radial, and if 8 = =/2, transverse,
e Vavilov-Cherenkov effect:

cos 8= -:—U (5.6¢)

where 0 is the angle between the radiation propagation direction and the velo-
city vector v of a particle.

5.‘224. In the Fizeau experiment on measurement of the velocity
of light the distance between the gear wheel and the mirror is | —
= 7.0 km, the number of teeth is z = 720. Two successive disappear-
ances of light are observed at the following rotation velocities of

}‘pehtwheelz ny = 283 rps and n, = 313 rps. Find the velocity of
ight.
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5.225. A source of light moves with velocity v relative to a receiver.
Demonstrate that for v < ¢ the fractional variation of frequency
of light is defined by Eq. (5.6a).

5.226. One of the spectral lines emitted by excited He* ions has
a wavelength A = 410 nm. Find the Doppler shift AA of that line
when observed at an angle 6 = 30° to the beam of moving ions
possessing kinetic energy I = 10 MeV.

5.227. When a spectral line of wavelength A = 0.59 pm is ob-
served in the directions to the opposite edges of the solar disc along
its equator, there is a difference in wavelengths equal to 8\ = 8.0 pm.
Find the period of the Sun's revolution about its own axis.

5.228. The Doppler effect has made it possible to discover the
double stars which are so distant that their resolution by means of
a telescope is impossible. The spectral lines of such stars periodically
become doublets indicating that the radiation does come from two
stars revolving about their centre of mass. Assuming the masses
of the two stars to be equal, find the distance between them and
their masses if the maximum splitting of the spectral lines is equal
to (AA/A),, = 1.2.107% and occurs every v = 30 days.

9.229. A plane electromagnetic wave of frequency o, falls normally
on the surface of a mirror approaching with a relativistic velocity V.
Making use of the Doppler formula, find the frequency of the reflect-
ed wave. Simplify the obtained expression for the case V < c.

5.230. A radar operates at a wavelength A = 50.0 ¢cm. Find the
velocity of an approaching aircraft if the beat frequency between
the transmitted signal and the signal reflected from the aircraft is
equal to Av = 1.00 kHz at the radar location.

5.231. Taking into account that the wave phase wt — kz is an
invariant, i.e. it retains its value on transition from one inertial
frame to another, determine how the frequency o and the wave
number k entering the expression for the wave phase are transformed.
Examine the unidimensional case.

5.232. How fast does a certain nebula recede if the hydrogen line
A = 434 nm in its spectrum is displaced by 130 nm toward lenger
wavelengths?

5.233. How fast should a car move for the driver to perceive a red
traffic light (A &~ 0.70 um) as a green one (A’ &~ 0.55 pm)?

5.234. An observer moves with velocity v, = 5 € along a straight

line. In front of him a source of monochromatic light moves with

velocity v, = —2 ¢ in the same direction and along the same straight

line. The proper frequency of light is equal to w,. Find the frequency
of light registered by the observer.

5.235. One of the spectral lines of atomic hydrogen has the wave-
length A =656.3 nm. Find the Doppler shift AL of that line when
observed at right angles to the beam of hydrogen atoms with kinetic
energy I = 1.0 MeV (the transverse Doppler effect).

e
B

5.236. A source emitting electromagnetic signals with proper
frequency w, = 3.0-10' s=1! moves at a constant velocity v =
= 0.80 ¢ along a straight line separated from a stationary observer P
by a distance ! (Fig. 5.37). Find the frequency of the signals perceived
by the observer at the moment when

(a) the source is at the point O;

(b) the observer sees it at the point O.
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Fig. 5.37. Fig. 5.38.

5.237. A narrow beam of electrons passes immediately over the
surface of a metallic mirror with a diffraction grating with period
d = 2.0 pm inscribed on it. The electrons move with velocity v,
comparable to ¢, at right angles to the lines of the grating. The
trajectory of the electrons can be seen in the form of a strip, whose
colouring depends on the observation angle 0 (Fig. 5.3.8). Interpret
this phenomenon. Find the wavelength of the radiation observed
at an angle 0 = 45° ‘

5.238. A gas consists of atoms of mass m being in thermodynamic
equilibrium at temperature 7. Suppose o, is the natural frequency
of light emitted by the atoms. . ‘

(a) Demonstrate that the spectral distribution of the emitted
light is defined by the formula

I,= Ioe~a(i—m/(oo)2’

(I, is the spectral intensity corresponding to the frequency w,,
a = mc¥2kT). ‘ .

(b) Find the relative width Aw/w,of a given spectral line, i.e.
the width of the line between the frequencies at whiqh I, = 1‘0/2.

5.239. A plane electromagnetic wave propagates in a medium
moving with constant velocity V < ¢ relative to an inertial frame K.
Find the velocity of that wave in the frame K if the rt_afractlve index
of the medium is equal to n and the propagation direction of the
wave coincides with that of the medium.

5.240. Aberration of light is the apparent displacement of stars
attributable to the effect of the orbital motion of the Earth. The
direction to a star in the ecliptic plane varies periodically, a},nd the
star performs apparent oscillations within an angle 80 = 41”. Find
the orbital velocity of the Earth.
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5.241. Demonstrate that the angle 6 between the propagation
direction of light and the x axis transforms on transition from the
reference frame K to K’ according to the formula

+__ cosB—p
cos 8" = 1—BcosB *

where fp = V/c and V is the velocity of the frame K’ with respect
to the frame K. The z and z’ axes of the reference frames coincide.

5.242. Find the aperture angle of a cone in which all the stars
located in the semi-sphere for an observer on the Earth will be visible
if one moves relative to the Earth with relativistic velocity V
differing by 1.0% from the velocity of light. Make use of the formula
of the foregoing problem.

5.243. Find the conditions under which a charged particle moving
uniformly through a medium with refractive index r emits light
(the Vavilov-Cherenkov effect). Find also the direction of that
radiation.

Instruetion. Consider the interference of oscillations induced by
the particle at various moments of time.

5.244. Find the lowest values of the kinetic energy of an electron
and a proton causing the emergence of Cherenkov’s radiation in
a medium with refractive index n = 1.60. For what particles is
this minimum value of kinetic energy equal to T,;, = 29.6 MeV?

5.245. Find the kinetic energy of electrons emitting light in
a medium with refractive index n = 1.50 at an angle 8 = 30° to
their propagation direction.

5.7. THERMAL RADIATION.
QUANTUM NATURE OF LIGHT
e Radiosity
M= %_ u, (5.7a)
where u is the space density of thermal radiation energy.
e Wien’'s formula and Wien's displacement law:

u, = 0F (0l/T), Th,=b, (5.7b)
where A, is the wavelength corresponding to the maximum of the function u;.
e Stefan-Boltzmann law:
M, = oT*, (5.7¢)
where o is the Stefan-Boltzmann constant.
e Planck’s formula:

105 1
Uy = W— —Em———-'i— . (5.7d)
e [Kinstein’s photoelectric equation:
mv?
hm=A+—g‘f’—’f_ (5.7¢)

g

e Compton effect:
Ak = 21 (1 — cos 0), (5.7f)

where %= A/mc is Compton's wavelength.

5.246. Using Wien's formula, demonstrate that

(a) the most probable radiation frequency w,, «» T;

(b)3 the maximum spectral density of thermal radiation (ug)max oo
o T3

{c) the radiosity M, c» T4

5.247. The temperature of one of the two heated black bodies is
Ty = 2500 K. Find the temperature of the other body if the wave-
length corresponding to its maximum emissive capacity exceeds
by Ak = 0.50 pmn the wavelength corresponding to the maximum
emissive capacity of the first black body.

5.248. The radiosity of a black body is M, = 3.0 W/cm?. Find
the wavelength corresponding to the maximum emissive capacity
of that body.

5.249. The spectral composition of solar radiation is much the
same as that of a black body whose maximum emission corresponds
to the wavelength 0.48 um. Find the mass lost by the Sun every
second due to radiation. Evaluate the time interval during which
the mass of the Sun diminishes by 1 per cent.

9.250. Find the temperature of totally ionized hydrogen plasma
of density p = 0.10 g/cm® at which the thermal radiation pressure
is equal to the gas kinetic pressure of the particles of plasma. Take
into account that the thermal radiation pressure p = u/3, where u
is the space density of radiation energy, and at high temperatures all
substances obey the equation of state of an ideal gas.

5.251. A copper ball of diameter d = 1.2 cm was placed in ap
evacuated vessel whose walls are kept at the absolute zero tempera-
ture. The initial temperature of the ball is 7, = 300 K. Assuming
the surface of the ball to be absolutely black, find how soon its
temperature decreases m = 2.0 times.

5.252. There are two cavities (Fig. 5.39) with small holes of equal
diameters d = 1.0 cm and perfectly reflecting outer surfaces. The

Fig. 5.39.

distance between the holes is I = 10 ¢m. A constant temperature
Ty = 1700 K is maintained in cavity 7. Calculate the steady-state
temperature inside cavity 2.

Instruction. Take into account that a black body radiation obeys
the cosine emission law.
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5.253. A cavity of volume V = 1.0 1 is filled with thermal radia-
tion at a temperature 7' = 1000 K. Find: o

(a) the heat capacity Cy; (b) the entropy S of that radiation.

5.254. Assuming the spectral distribution of thermal radiation
energy to obey Wien’s formula u (o, T) = A0® exp (—aw/T), where

= 7.64 ps-K, find for a temperature 7 = 2000 K the most
probable o

(a) radiation frequency; (b) radiation wavelength. ‘

5.255. Using Planck’s formula, derive the approximate expressions
for the space spectral density u, of radla}tmn '

(a) in the range where o < kT (Rayl_elg’h-Jeans formula);

(b) in the range where Zw > kT (Wien's formula). .

5.256. Transform Planck’s formula for space spec_tral density u,
of radiation from the variable o to the variables v (linear frequency)

d A (wavelength). . ‘
an5.257(. Using %lanck’s formula, find the power radl_ated by a unit
area of a black body within a narrow wavelength 1_nterval A =
— 1.0 nm close to the maximum of spectral radiation density at
a temperature 7 = 3000 K of the body. . .

5.258. Fig. 5.40 shows the plot of the function y (z) representing
a fraction of the total power of thermal radiation falling within

¥
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Fig. 5.40.

the spectral interval from 0 to z. Here z = 7&/7»,,1. (X]n is the Wavelength
corresponding to the maximum of spectral radiation density).
Using this plot, find: ' o ”
(a) the wavelength which divides the radiation spectrum into
two equal (in terms of energy) parts at the temperature 37_00 K;
(b) the fraction of the total radiation power falling within the
visible range of the spectrum (0.40-0.76 um) at the temperature
5000 K; . _
(c) how many times the power radiated at wavelengths exceeding
0.76 pm will increase if the temperature rises from 3000 to 5000 K.
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5.259. Making use of Planck’s formula, derive the expressions
determining the number of photons per 1 ¢cm?® of a cavity at a tempe-
rature 7' in the spectral intervals (w, ® + dw) and (A, A-- dh).

5.260. An isotropic point source emits light with wavelength
A = 589 nm. The radiation power of the source is P = 10 W. Find:

(a) the mean density of the flow of photons at a distance r =
= 2.0 m from the source;

(b) the distance between the source and the point at which the
mean concentration of photons is equal to » = 100 cm -3,

5.261. From the standpoint of the corpuscular theory demonstrate
that the momentum transferred by a beam of parallel light rays
per unit time does not depend on its spectral composition but de-
pends only on the energy flux @,.

5.262. A laser emits a light pulse of duration 1 = 0.13 ms and
energy £ = 10 J. Find the mean pressure exerted by such a light
pulse when it is focussed into a spot of diameter d = 10 pm on
a surface perpendicular to the beam and possessing a reflection
coefficient p = 0.50.

5.263. A short light pulse of energy £ = 7.5 J falls in the form
of a narrow and almost parallel beam on a mirror plate whose reflec-
tion coefficient is p = 0.60. The angle of incidence is 30°. In terms
of the corpuscular theory find the momentum transferred to the

late.

P 5.264. A plane light wave of intensity 7 = 0.20 W/cm? falls on
a plane mirror surface with reflection coefficient p = .8. The angle
of incidence is 45°. In terms of the corpuscular theory find the magni-
tude of the normal pressure exerted by light on that surface.

5.265. A plane light wave of intensity 7 = 0.70 W/cm? illumi-
nates a sphere with ideal mirror surface. The radius of the sphere is
R = 5.0 cm. From the standpoint of the corpuscular theory find
the force that light exerts on the sphere.

5.266. An isotropic point source of radiation power P is located
on the axis of an ideal mirror plate. The distance between the source
and the plate exceeds the radius of the plate n-fold. In terms of the
corpuscular theory find the force that light exerts on the plate.

5.267. In a reference frame K a photon of frequency o falls norm-
ally on a mirror approaching it with relativistic velocity V. Find
the momentum imparted to the mirror during the reflection of the
photon

(a) in the reference frame fixed to the mirror;

(b) in the frame K.

5.268. A small ideal mirror of mass m = 10 mg is suspended by
a weightless thread of length I = 10 c¢cm. Find the angle through
which the thread will be deflected when a short laser pulse with
energy E = 13 J is shot in the horizontal direction at right angles
to the mirror. Where does the mirror get its kinetic energy?

9.269. A photon of frequency w, is emitted from the surface of
a star whose mass is M and radius R. Find the gravitational shift
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of frequency Aw/w, of the photon at a very great distance from the
star.

5.270. A voltage applied to an X-ray tube being increased m =
= 1.5 times, the short-wave limit of an X-ray continuous spectrum
shifts by AL = 26 pm. Find the initial voltage applied to the
tube.

5.271. A narrow X-ray beam falls on a NaCl single crystal. The
least angle of incidence at which the mirror reflection from the
system of crystallographic planes is still observed is equal to & =
= 4.1°. The interplanar distance is d = 0.28 nm. How high is the
voltage applied to the X-ray tube?

5.272. Find the wavelength of the short-wave limit of an X-ray
continuous spectrum if electrons approach the anticathode of the
tube with velocity v = 0.85 ¢, where ¢ is the velocity of light.

5.273. Find the photoelectric threshold for zinc and the maximum
velocity of photoelectrons liberated from its surface by electromag-
netic radiation with wavelength 250 nm.

5.274. Illuminating the surface of a certain metal alternately
with light of wavelengths A; = 0.35 pm and A, = 0.54 um, it was
found that the corresponding maximum velocities of photoelectrons
differ by a factor = 2.0. Find the work function of that metal.

5.275. Up to what maximum potential will a copper ball, remote
from all other bodies, be charged when irradiated by electromagnetic
radiation of wavelength A = 140 nm?

5.276. Find the maximum kinetic energy of photoelectrons liberat-
ed from the surface of lithium by electromagnetic radiation whose
electric component varies with time as E = a (1 + cos w?) cos oo,
where a is a constant, ® = 6.0-10* s~! and 0, = 3.60.10" s-1,

5.277. Electromagnetic radiation of wavelength A = 0.30 pm
falls on a photocell operating in the saturation mode. The correspond-
ing spectral sensitivity of the photocell is J = 4.8 mA/W. Find the
yield of photoelectrons, i.e. the number of photoelectrons produced
by each incident photon.

5.278. There is a vacuum photocell whose one electrode is made
of cesium and the other of copper. Find the maximum velocity of
photoelectrons approaching the copper electrode when the cesium
electrode is subjected to electromagnetic radiation of wavelength
0.22 pm and the electrodes are shorted outside the cell.

5.279. A photoelectric current emerging in the circuit of a va-
cuum photocell when its zinc electrode is subjected to electromagnetic
radiation of wavelength 262 nm is cancelled if an external decelerat-
ing voltage 1.5 V is applied. Find the magnitude and polarity of
the outer contact potential difference of the given photocell.

5.280. Compose the expression for a quantity whose dimension
is length, using velocity of light ¢, mass of a particle m, and Planck’s
constant %#. What is that quantity?

5.281. Using the conservation laws, demonstrate that a free
electron cannot absorb a photon completely.
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5.282. Explain the following features of Compton scattering of
light by matter:

(a) the increase in wavelength AA is independent of the nature of
the scattering substance;

(b) the intensity of the displaced component of scattered light
grows with the increasing angle of scattering and with the diminish-
ing atomic number of the substance;

(c) the presence of a non-displaced component in the scattered
radiation.

5.283. A narrow monochromatic X-ray beam falls on a scattering
substance. The wavelengths of radiation scattered at angles 8; = 60°
and 0, = 120° differ by a factor n = 2.0. Assuming the free electrons
};0 behresponsible for the scattering, find the incident radiation wave-
ength.

5.284. A photon with energy Zw = 1.00 MeV is scattered by a
stationary free electron. Find the kinetic energy of a Compton
electron if the photon’s wavelength changed by n = 25% due to
scattering.

5.285. A photon of wavelength A = 6.0 pm is scattered at right
angles by a stationary free electron. Find:

(a) the frequency of the scattered photon;

(b) the kinetic energy of the Compton electron.

5.286. A photon with energy Ao = 250 keV is scattered at an
angle 0 = 120° by a stationary free electron. Find the energy of the
scattered photon.

5.287. A photon with momentum p = 1.02 MeV/c, where ¢ is
the velocity of light, is scattered by a stationary free electron,
changing in the process its momentum to the value p’ = 0.255 MeV/e.
At what angle is the photon scattered?

5.288. A photon is scattered at an angle 6 = 120° by a stationary
free electron. As a result, the electron acquires a kinetic energy
T = 0.45 MeV. Find the energy that the photon had prior to scat-
tering.

5.289. Find the wavelength of X-ray radiation if the maximum
kinetic energy of Compton electrons is T,,,, = 0.19 MeV.

5.290. A photon with energy %Aw = 0.15 MeV is scattered by
a stationary free electron changing its wavelength by AL = 3.0 pm.
Find the angle at which the Compton electron moves.

5.291. A photon with energy exceeding n = 2.0 times the rest
energy of an electron experienced a head-on collision with a sta-
tionary free electron. Find the curvature radius of the trajectory of
the Compton electron in a magnetic field B = 0.12 T. The Compton
glel(atron is assumed to move at right angles to the direction of the

eld.

5.292. Having collided with a relativistic electron, a photon is
deflected through an angle 8 = 60° while the electron stops. Find
the Compton displacement of the wavelength of the scattered photon.



PART SIX

ATOMIC AND NUCLEAR PHYSICS #

6.1. SCATTERING OF PARTICLES.
RUTHERFORD-BOHR ATOM

e Angle 0 at which a charged particle is deflected by the Coulomb field
of a stationary atomic nucleus is defined by the formula:

0 _ g9
tan 7=_2le2 , (6.1a)

where ¢; and g, are the charges of the particle and the nucleus, & is the aiming
parameter, T is the kinetic energy of a strik-
ing particle.

e Rutherford formula. The relative num-
ber of particles scattered into an elementary
solid angle dQ at an angle 6 to their initial pro-
pagation direction:

T
11
FPaschen series

N W 3

Balmer series

aN [ q9x V2 dQ
=" (% ) sy > O
where n is the number of nuclei of the foil per
unit area of its surface, dQ = sin 6 d0 dg.

o Generalized Balmer formula (Fig. 6.1):

Lyman series

1 i met
— 2 —
w=RZ (_nf ——n% ) , R_sz" » (6.1¢)

Fig. 6.1.

where o is the transition frequency (in st ) between energy levels with quan-
tum numbers n; and n,, R is the Rydberg constant, Z is the serial number of a
hydrogen-like ion.

6.1. Employing Thomson’s model, calculate the radius of a hydro-
gen atom and the wavelength of emitted light if the ionization energy
of the atom is known to be equal to E = 13.6 eV.

6.2. An alpha particle with kinetic energy 0.27 MeV is deflected
through an angle of 60° by a golden foil. Find the corresponding
value of the aiming parameter.

6.3. To what minimum distance will an alpha particle with

kinetic energy I = 0.40 MeV approach in the case of a head-on
collision to

(a) a stationary Pb nucleus;
(b) a stationary free Li’ nucleus?
6.4. An alpha particle with kinetic energy T = 0.50 MeV is

deflected through an angle of 8 = 90° by the Coulomb field of a
stationary Hg nucleus. Find:

* All the formulas in this Part are given in the Gaussian system of units.
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(a) the least curvature radius of its trajectory;

(b) the minimum approach distance between the particle and the
nucleus.

6.5. A proton with kinetic energy I and aiming parameter b was
deflected by the Coulomb field of a stationary Au nucleus. Find the
momentum imparted to the given nucleus as a result of scattering.

6.6. A proton with kinetic energy 7 = 10 MeV flies past a sta-
tionary free electron at a distance b = 10 pm. Find the energy
acquired by the electron, assuming the proton’s trajectory to be
rectilinear and the electron to be practically motionless as the proton
flies by.

6.7.yA particle with kinetic energy T is deflected by a spherical
potential well of radius R and depth U, i.e. by the field in which
the potential energy of the particle takes the form

U — 0 for r > R,
- —U, for r <<R,

where r is the distance from the centre of the well. Find the relation-
ship between the aiming parameter b of the particle and the angle 6
through which it deflects from the initial motion direction.

6.8. A stationary ball of radius R is irradiated by a parallel
stream of particles whose radius is r. Assuming the collision of
a particle and the ball to be elastic, find:

(a) the deflection angle 8 of a particle as a function of its aiming
parameter b;

(b) the fraction of particles which after a collision with the ball
are scattered into the angular interval between 0 and 6 - d6;

(c) the probability of a particle to be deflected, after a collision

with the ball, into the front hemisphere (9 <g)

6.9. A narrow beam of alpha particles with kinetic energy 1.0 MeV
falls normally on a platinum foil 1.0 pm thick. The scattered par-
ticles are observed at an angle of 60° to the incident beam direction
by means of a counter with a circular inlet area 1.0 cm?® located at
the distance 10 cm from the scattering section of the foil. What
fraction of scattered alpha particles reaches the counter inlet?

6.10. A narrow beam of alpha particles with kinetic energy I' =
= 0.50 MeV and intensity / = 5.0-10° particles per second falls
normally on a golden foil. Find the thickness of the foil if at a distance
r =15 cm from a scattering section of that foil the flux density
of scattered particles at the angle 8 = 60° to the incident beam is
equal to J = 40 particles/(cm?-s). )

6.11. A narrow beam of alpha particles falls normally on a silver
foil behind which a counter is set to register the scattered particles.
On substitution of platinum foil of the same mass thickness for the
silver foil, the number of alpha particles registered per unit time
increased 1 = 1.52 times. Find the atomic number of platinum,
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assuming the atomic number of silver and the atomic masses of both
platinum and silver to be known.

6.12. A narrow beam of alpha particles with kinetic energy T’ =
= 0.50 MeV falls normally on a golden foil whose mass thickness
is pd = 1.5 mg/cm?®. The beam intensity is I, = 5.0-10° particles
per second. Find the number of alpha particles scattered by the foil
during a time interval v = 30 min into the angular interval:

(a) 59-61°; (b) over 6, = 60°.

6.13. A narrow beam of protons with velocity v = 6-10° m/s
falls normally on a silver foil of thickness d = 1.0 pum. Find the
probability of the protons to be scattered into the rear hemisphere
(6 > 90°).

6.14. A narrow beam of alpha particles with kinetic energy 7T =
= 600 keV falls normally on a golden foil incorporating n =
= 1.1-10" nuclei/cm?. Find the fraction of alpha particles scattered
through the angles 6 << 6, = 20°.

6.15. A narrow beam of protons with kinetic energy 7' = 1.4 MeV
falls normally on a brass foil whose mass thickness pd = 1.5 mg/cm?2.
The weight ratio of copper and zinc in the foil is equal to 7 : 3 re-
spectively. Find the fraction of the protons scattered through the
angles exceeding 6, = 30°.

6.16. Find the effective cross section of a uranium nucleus cor-
responding to the scattering of alpha particles with kinetic energy
T = 1.5 MeV through the angles exceeding 8, = 60°.

6.17. The effective cross section of a gold nucleus corresponding
to the scattering of monoenergetic alpha particles within the angular
interval from 90° to 180° is equal to Ao = 0.50 kb. Find:

(a) the energy of alpha particles;

(b) the differential cross section of scattering do/dQ (kb/sr) cor-
responding to the angle 8 = 60°.

6.18. In accordance with classical electrodynamics an electron
moving with acceleration w loses its energy due to radiation as

dE 2

22 2 w2
dt 33 W

where e is the electron charge, ¢ is the velocity of light. Estimate the
time during which the energy of an electron performing almost
harmonic oscillations with frequency o == 5-10% s—1 will decrease
n = 10 times.

6.19. Making use of the formula of the foregoing problem, estimate
the time during which an electron moving in a hydrogen atom along
a circular orbit of radius r = 50 pm would have fallen onto the
nucleus. For the sake of simplicity assume the vector w to be perma-
nently directed toward the centre of the atom.

6.20. Demonstrate that the frequency o of a photon emerging
when an electron jumps between neighbouring circular orbits of
a hydrogen-like ion satisfies the inequality w, > ® > ®,+,. where
o, and @, 4+, are the frequencies of revolution of that electron around
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the nucleus along the circular orbits. Make sure that as n — oo the
frequency of the photon ® — w,.

6.21. A particle of mass m moves along a circular orbit in a centro-
symmetrical potential field U (r) = kr?/2. Using the Bohr quantiza-
tion condition, find the permissible orbital radii and energy levels
of that particle.

6.22. Calculate for a hydrogen atom and a He* ion:

(a) the radius of the first Bohr orbit and the velocity of an electron
moving along it;

(b) the kinetic energy and the binding energy of an electron in
the ground state;

(c) the ionization potential, the first excitation potential and
the wavelength of the resonance line (n’ = 2 — n = 1).

6.23. Calculate the angular frequency of an electron occupying
the second Bohr orbit of He* ion.

6.24. For hydrogen-like systems find the magnetic mement p,
corresponding to the motion of an electron along the n-th orbit
and the ratio of the magnetic and mechanical moments p,/M,.
Calculate the magnetic moment of an electron occupying the first
Bohr orbit.

6.25. Calculate the magnetic field induction at the centre of
a hydrogen atom caused by an electron moving along the first Bohr
orbit.

6.26. Calculate and draw on the wavelength scale the spectral
intervals in which the Lyman, Balmer, and Paschen series for atomic
hydrogen are confined. Show the visible portion of the spec-
trum.

6.27. To what series does the spectral line of atomic hydrogen
belong if its wave number is equal to the difference between the wave
numbers of the following two lines of the Balmer series: 486.1 and
410.2 nm? What is the wavelength of that line?

6.28. For the case of atomic hydrogen find:

(a) the wavelengths of the first three lines of the Balmer series;

(b) the minimum resolving power A/6A of a spectral instrument
capable of resolving the first 20 lines of the Balmer series.

6.29. Radiation of atomic hydrogen falls normally on a diffraction
grating of width I = 6.6 mm. The 50th line of the Balmer series
in the observed spectrum is close to resolution at a diffraction angle 0
(in accordance with Rayleigh’s criterion). Find that angle.

6.30. What element has a hydrogen-like spectrum whose lines
have wavelengths four times shorter than those of atomic hydrogen?

6.31. How many spectral lines are emitted by atomic hydrogen
excited to the n-th energy level?

6.32. What lines of atomic hydrogen absorption spectrum fall
within the wavelength range from 94.5 to 130.0 nm?

6.33. Find the quantum number n corresponding to the excited
state of He* ion if on transition to the ground state that ion emits
two photons in succession with wavelengths 108.5 and 30.4 nm.
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6.34. Calculate the Rydberg constant R if He* ions are known
to have the wavelength difference between the first (of the longest
wavelength) lines of the Balmer and Lyman series equal to AA =
= 133.7 nm. '

6.35. What hydrogen-like ion has the wavelength difference be-
tween the first lines of the Balmer and Lyman series equal to 59.3 nm?

6.36. Find the wavelength of the first line of the He* ion spectral
series whose interval between the extreme lines is Aw =
= 5.18-101% s-1,

6.37. Find the binding energy of an electron in the ground state
of hydrogen-like ions in whosé spectrum the third line of the Balmer
series is equal to 108.5 nm.

6.38. The binding energy of an electron in the ground state of He
atom is equal to E, = 24.6 eV. Find the energy required to remove
both electrons from the atom.

6.39. Find the velocity of photoelectrons liberated by electromag-
netic radiation of wavelength A = 18.0 nm from stationary He*
ions in the ground state.

6.40. At what minimum kinetic energy must a hydrogen atom
move for its inelastic head-on collision with another, stationary,
hydrogen atom to make one of them capable of emitting a photon?
Both atoms are supposed to be in the ground state prior to the colli-
sion.

6.41. A stationary hydrogen atom emits a photon corresponding
to the first line of the Lyman series. What velocity does the atom
acquire?

6.42. From the conditions of the foregoing problem find how much
(in per cent) the energy of the emitted photon differs from the energy
of the corresponding transition in a hydrogen atom.

6.43. A stationary He+* ion emitted a photon corresponding to the
first line of the Lyman series. That photon liberated a photoelectron
from a stationary hydrogen atom in the ground state. Find the
velocity of the photoelectron.

6.44. Find the velocity of the excited hydrogen atoms if the first
line of the Lyman series is displaced by AL = 0.20 nm when their
radiation is observed at an angle 8 = 45° to their motion direction.

6.45. According to the Bohr-Sommerfeld postulate the periodic
motion of a particle in a potential field must satisfy the following
quantization rule:

(§p dq= 2nkn,

where ¢ and p are generalized coordinate and momentum of the
particle, 7 are integers. Making use of this rule, find the permitted
values of energy for a particle of mass m moving

(a) in a unidimensional rectangular potential well of width !
with infinitely high walls;

(b) along a circle of radius r;
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{(¢) in a unidimensional potential field U/ = az?/2, where a is
a positive constant;

(d) along a round orbit in a central field, where the potential
energy of the particle is equal to U = —a/r (o is a positive con-
stant).

6.4)6. Taking into account the motion of the nucleus of a hydrogen
atom, find the expressions for the electron’s binding energy in the
ground state and for the Rydberg constant. How much (in per cent)
do the binding energy and the Rydberg constant, obtained without
taking into account the motion of the nucleus, differ from the more
accurate corresponding values of these quantities?

6.47. For atoms of light and heavy hydrogen (H and D) find the
difference

(a) between the binding energies of their electrons in the ground
state;

(b) between the wavelengths of first lines of the Lyman series.

6.48. Calculate the separation between the particles of a system
in the ground state, the corresponding binding energy, and the
wavelength of the first line of the Lyman series, if such a system is

(a) a mesonic hydrogen atom whose nucleus is a proton (in a meso-
nic atom an electron is replaced by a meson whose charge is the
same and mass is 207 that of an electron);

(b) a positronium consisting of an electron and a positron revolving
around their common centre of masses.

6.2. WAVE PROPERTIES OF PARTICLES.
SCHRODINGER EQUATION

e The de Broglie wavelength of a particle with momentum p:

2nh
A= — 6.2a
: (6.23)
e Uncertainty principle:
Az-Apy = k. (6.2b)

e Schrodinger time-dependent and time-independent equations:

2
ik "’a—‘y = ——g— V¥ LUV,
! ™ (6.2¢)

Vip+ o7 (E—0) p=0,

where ¥ is the total wave function, + is its coordinate part, V2 is the Lapla'ce
operator, £ and U are the total and potential energies of the particle. In spheric-
af coordinates:

92 2 8 1 a /. ] 1 92 8.2d
Vi= st ot rame gy (00 50 ) e ogr - 20
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o Coefficient of transparency of a potential barrier V (2):

Xg

D =~ exp [—% S Vim (V—=E) dx], (6.2¢)

Xy

where z; and z, are the coordinates of the points between which |V > E.

6.49. Calculate the de Broglie wavelengths of an electron, proton,
and uranium atom, all having the same kinetic energy 100 eV.

6.50. What amount of energy should be added to an electron to
reduce its de Broglie wavelength from 100 to 50 pm?

6.51. A neutron with kinetic energy T = 25 eV strikes a sta-
tionary deuteron (heavy hydrogen nucleus). Find the de Broglie
wavelengths of both particles in the frame of their centre of inertia.

6.52. Two identical non-relativistic particles move at right
angles to each other, possessing de Broglie wavelengths A, and A,.
Find the de Broglie wavelength of each particle in the frame of
their centre of inertia.

6.53. Find the de Broglie wavelength of hydrogen molecules,
which corresponds to their most probable velocity at room tempera-
ture.

6.54. Calculate the most probable de Broglie wavelength of
hydrogen molecules being in thermodynamic equilibrium at room
temperature.

6.55. Derive the expression for a de Broglie wavelength A of a rela-
tivistic particle moving with kinetic energy 7. At what values of T
does the error in determining A using the non-relativistic formula
not exceed 1% for an electron and a proton?

6.56. At what value of kinetic energy is the de Broglie wavelength
of an electron equal to its Compton wavelength?

6.57. Find the de Broglie wavelength of relativistic electrons
reaching the anticathode of an X-ray tube if the short wavelength
limit of the continuous X-ray spectrum is equal to Ay, = 10.0 pm?

6.58. A parallel stream of monoenergetic electrons falls normally
on a diaphragm with narrow square slit of width & = 1.0 pm.
Find the velocity of the electrons if the width of the central diffrac-
tion maximum formed on a screen located at a distance ! = 50 cm
from the slit is equal to Az = 0.36 mm.

6.59. A paralle] stream of electrons accelerated by a potential
difference ¥ = 25 V falls normally on a diaphragm with two narrow
slits separated by a distance d = 50 pm. Calculate the distance
between neighbouring maxima of the diffraction pattern on a screen
located at a distance I = 100 cm from the slits.

6.60. A narrow stream of monoenergetic electrons falls at an
angle of incidence 6 = 30° on the natural facet of an aluminium
single crystal. The distance between the neighbouring crystal planes
parallel to that facet is equal to d = 0.20 nm. The maximum mirror
reflection is observed at a certain accelerating voltage V,. Find V,
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if the next maximum mirror reflection is known to be observed when
the accelerating voltage is increased n = 2.25 times.

6.61. A narrow beam of monoenergetic electrons falls normally
on the surface of a Ni single crystal. The reflection maximum of
fourth order is observed in the direction forming an angle 8 = 55°
with the normal to the surface at the energy of the electrons equal
to T = 180 eV. Calculate the corresponding value of the interplanar
distance.

6.62. A narrow stream of electrons with kinetic energy I =
= 10 keV passes through a polycrystalline aluminium foil, forming
a system of diffraction fringes on a screen. Calculate the interplanar
distance corresponding to the reflection of third order from a certain
system of crystal planes if it is responsible for a diffraction ring of
diameter D = 3.20 cm. The distance between the foil and the screen
is I = 10.0 cm.

6.63. A stream of electrons accelerated by a potential difference V
falls on the surface of a metal whose inner potential is V; = 15 V.
Find:

(a) the refractive index of the metal for the electrons accelerated
by a potential difference ¥ = 150 V;

(b) the values of the ratio V/V; at which the refractive index differs
from unity by not more than = 1.0%.

6.64. A particle of mass m is located in a unidimensional square
potential well with infinitely high walls. The width of the well is
equal to I. Find the permitted values of energy of the particle taking
into account that only those states of the particle’s motion are
realized for which the whole number of de Broglie half-waves are
fitted within the given well.

6.65. Describe the Bohr quantum conditions in terms of the wave
theory: demonstrate that an electron in a hydrogen atom can move
only along those round orbits which accommodate a whole number
of de Broglie waves.

6.66. Estimate the minimum errors in determining the velocity
of an electron, a proton, and a ball of mass of 1 mg if the coordinates
of the particles and of the centre of the ball are known with uncer-
tainly 1 pm.

6.67. Employing the uncertainty principle, evaluate the indeter-
minancy of the velocity of an electron in a hydrogen atom if the
size of the atom is assumed to be I = 0.10 nm. Compare the obtained
magnitude with the velocity of an electron in the first Bohr orbit
of the given atom.

6.68. Show that for the particle whose coordinate uncertainty is
Az =}/27, where A is its de Broglie wavelength, the velocity uncertain-
ty is of thesameorder of magnitude as the particle’s velocity itself.

6.69. A free electron was initially confined within a region with
linear dimensions I = 0.10 nm. Using the uncertainty principle,
evaluate the time over which the width of the corresponding train
of waves becomes m = 10 times as large.
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6.70. Employing the uncertainty principle, estimate the mini-
mum kinetic energy of an electron confined within a region whose
size is I = 0.20 nm.

6.71. An electron with kinetic energy T =~ 4 eV is confined
within a region whose linear dimension is I = 1 pm. Using the
uncertainty principle, evaluate the relative uncertainty of its velo-
city.

6.72. An electron is located in a unidimensional square potential
well with infinitely high walls. The width of the well is I. From
the uncertainty principle estimate the force with which the electron
possessing the minimum permitted energy acts on the walls of the well.

6.73. A particle of mass m moves in a unidimensional potential
field U = kx*/2 (harmonic oscillator). Using the uncertainty prin-
ciple, evaluate the minimum permitted energy of the particle in
that field.

6.74. Making use of the uncertainty principle, evaluate the mini-
mum permitted energy of an electron in a hydrogen atom and its
corresponding apparent distance from the nucleus.

6.75. A parallel stream of hydrogen atoms with velocity v =
= 600 m/s falls normally on a diaphragm with a narrow slit behind
which a screen is placed at a distance [ = 1.0 m. Using the uncer-
tainty principle, evaluate the width of the slit 8 at which the width
of its image on the screen is minimum.

6.76. Find a particular solution of the time-dependent Schrédinger
equation for a freely moving particle of mass m.

6.77. A particle in the ground state is located in a unidimensional
square potential well of length [ with absolutely impenetrable walls
(0 << x << l). Find the probability of the particle staying within

a region +1< z < =1

6.78. A particle is located in a unidimensional square potential
well with infinitely high walls. The width of the well is I. Find the
normalized wave functions of the stationary siates of the particle,
taking the midpoint of the well for the origin of the z coordinate.

6.79. Demonstrate that the wave functions of the stationary states
of a particle confined in a unidimensional potential well with infi-
nitely high walls are orthogonal, i.e. they satisfy the condition
!

S Yonr dz = 0 if n’ 5= n. Here [ is the width of the well, n are
0
integers.

6.80. An electron is located in a unidimensional square potential
well with infinitely high walls. The width of the well equal to [ is
such that the energy levels are very dense. Find the density of energy
levels dN/dE, i.e. their number per unit energy interval, as a func-
tion of E. Calculate dN/dE for E = 1.0 eV if [ = 1.0 cm.

6.81. A particle of mass m is located in a two-dimensional square
potential well with absolutely impenetrable walls. Find:

g
A5}

(a) the particle’s permitted energy values if the sides of the well
are [, and 1,;

(b) the energy values of the particle at the first four levels if the
well has the shape of a square with side .

6.82. A particle is located in a two-dimensional square potential
well with absolutely impenetrable walls (0 << z << a, 0 << y << b).
Find the probability of the particle with the lowest energy to be
located within a region 0 << z << a/3.

6.83. A particle of mass m is located in a three-dimensional cubic
potential well with absolutely impenetrable walls. The side of the
cube is equal to ¢. Find:

(a) the proper values of energy of the particle;

(b) the energy difference between the third and fourth levels;

(c) the energy of the sixth level and the number of states (the
degree of degeneracy) corresponding to that level.

6.84. Using the Schrédinger equation, demonstrate that at the
point where the potential energy U (z) of a particle has a finite
discontinuity, the wave function remains smooth, i.e. its first deriva-
tive with respect to the coordinate is continuous.

6.85. A particle of mass m is located in a unidimensional potential
field U (z) whose shape is shown in Fig. 6.2, where U (0) = oo.
Find:

U
I
! %
f .
1/ { Z

Fig. 6.2.

(a) the equation defining the possible values of energy of the
particle in the region E << U,; reduce that equation to the form

sin kl = £kl V' #*/2ml2U ,

where & = |/ 2mE/R. Solving this equation by graphical means,
demonstrate that the possible values of energy of the particle form
a discontinuous spectrum;

(b) the minimum value of the quantity [*U, at which the first
energy level appears in the region E < U,. At what minimum value
of I*U, does the nth level appear?
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6.86. Making use of the solution of the foregoing problem, deter-
mine the probability of the particle with energy E = U,/2 to be
located in the region z > I, if I*U, = (—'2— n)MT;.

6.87. Find the possible values of energy of a particle of mass m
located in a spherically symmetrical potential well U (r) = 0 for
r<<ryand U (r) = oo for r = ry, in the case when the motion of
the particle is described by a wave function (r) depending only on r.

Instruction. When solving the Schrédinger equation, make the
substitution ¢y (r) = y (r)/r.

6.88. From the conditions of the foregoing problem find:

(a) normalized eigenfunctions of the particle in the states for
which ¢ (r) depends only on r;

(b) the most probable value ry, for the ground state of the particle
and the probability of the particle to be in the region r << rp,.

6.89. A particle of mass m is located in a spherically symmetrical
potential well U (r) = 0 for r<<r, and U (r) = U, for r >r,.

(a) By means of the substitution ¢ (r) = y (r)/r find the equation
defining the proper values of energy E of the particle for E << U,,
when its motion is described by a wave function ¢ (r) depending
only on r. Reduce that equation to the form

sin kry =+ kr, } %%/2mr3U,, where k=Y 2mE/h.

(b) Calculate the value of the quantity riU/, at which the first
level appears.

6.90. The wavefunction of a particle of mass m in a unidimension-
al potential field U/ () = kz*/2 has in the ground state the form
P () = Ae~**? where A is a normalization factor and a is a positive
constant. Making use of the Schrédinger equation, find the constant &
and the energy E of the particle in this state.

6.91. Find the energy of an electron of a hydrogen atom in a sta-
tionary state for which the wave function takes the form ¥ (r) =
=A (1 4~ar)e ", where A, a, and a are constants.

6.92. The wave function of an electron of a hydrogen atom in the
ground state takes the form ¥ (r) = Ae~"/"1, where A is a certain
constant, ry is the first Bohr radius. Find:

(a) the most probable distance between the electron and the
nucleus;

(b) the mean value of modulus of the Coulomb force acting on the
electron;

(c) the mean value of the potential energy of the electron in the
field of the nucleus.

6.93. Find the mean electrostatic potential produced by an
electron in the centre of a hydrogen atom if the electron is in the
ground state for which the wave function is{ (r) = Ae~"/"1, where 4
is a certain constant, r; is the first Bohr radius.
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6.94. Particles of mass m and energy E move from the left to the
potential barrier shown in Fig. 6.3. Find:

(a) the reflection coefficient R of the barrier for £ > U,;

(b) the effective penetration depth of the particles into the region
z > 0 for E << U,, i.e. the distance from the barrier boundary to
the point at which the probability of finding a particle decreases
e-fold.

Ui

fe—— vy ——d
—

1/ z

Fig. 6.3.

6.95. Employing Eq. (6.2e), find the probability D of an electron
with energy E tunnelling through a potential barrier of width !
and height U, provided the barrier is shaped as shown:

(a) in Fig. 6.4;

(b) in Fig. 6.5.

"y
/]
(] /U,,
3 E
- A . £
L s _ ]
~ Jg 1 A
Fig. 6.4. Fig. 6.5. Fig. 6.6.

6.96. Using Eq. (6.2¢), find the probability D of a particle of
mass m and energy E tunnelling through the potential barrier
shown in Fig. 6.6, where U (z) = U, (1 — z¥/1?).

6.3. PROPERTIES OF ATOMS. SPECTRA

.o Spectral labelling of terms: *(L);, where » = 2§ 4+ 1 is the multipli-
city, L, §, J are quantum numbers,

L=0,1,2 3, 4 5,6, ...
(L: S, P, D, F, G, H, I, ...
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e Terms of alkali metal atoms:
R

T= -(n—{—_a)—’- , (638)
where R is the Rydberg constant, a is the Rydberg correction.
Fig. 6.7 illustrates the diagram of a lithium atom terms.
° Angular momenta of an atom:
My =nrVL(IL+D, (6.3b)

with similar expressions for Mg and M.

e Hund rules: ]

(1) For a certain electronic configuration, the terms of the largest S value
are tlllle llqwesit in energy, and among the terms of §,,,, that of the largest L
usually lies lowest;

b
g P bij = 4
—_— — ———— “\\1
<
" AR
B
i
g . X
Dittuse L L—seriesy
3 series N
K, -2
Shar; 1 K
s‘er/e@ s -‘§
Ky I
Principal series L
d K-series !
Fig. 6.7. Fig. 6.8.

(2) for the basic (normal) term J = {L — S| if the subshell is less than
halffilled, and J = L + S in the remaining cases.
e Boltzmann's formula:
Ny 81 o~(E-EnT, (6.3¢)
Ny, &
where g, and g, are the statistical weights (degeneracies) of the corresponding
levels.
e Probabilities of atomic transitions per unit time between level 7 and a
higher level 2 for the cases of spontaneous radiation, induced radiation, and
absorption:

PP = Ay, P =By, P =By, (6.3d)
where Ay, By, By, are Einstein coefficients, u, is the spectral density of radia-

tion corresponding to frequency o of transition between the given levels.
e Relation between Einstein coefficients:
n2e3
g1B12=gsB31y Bay= Fro8 Ay, (6.3¢)
e Diagram showing formation of X-ray spectra (Fig. 6.8).
e Moseley’s law for K, lines: ]

og, = R (Z—0)% (6.30)

a
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where o is the correction constant which is equal to unity for light elements.
e Magnetic moment of an atom and Landé g factor:

JIFEH LS SN =L (L4
T D) . (6:3g)

p=g VI +D pg g=1+

e Zeeman splitting of spectral lines in a weak magnetic field:
A = (mgy — magy) ppBlh. (6.3h)

e With radiation directed along the magnetic field, the Zeeman compo-
nents caused by the transition m; = mg are absent.

6.97. The binding energy of a valence electron in a Li atom in the
states 2§ and 2P is equal to 5.39 and 3.54 eV respectively. Find
the Rydberg corrections for S and P terms of the atom.

6.98. Find the Rydberg correction for the 3P term of a Na atom
whose first excitation potential is 2.40 V and whose valence electron
in the normal 3§ state has the binding energy 5.14 eV.

6.99. Find the binding energy of a valence electron in the ground
state of a Li atom if the wavelength of the first line of the sharp
series is known to be equal to A; = 813 nm and the short-wave
cut-off wavelength of that series to A, = 350 nm.

6.100. Determine the wavelengths of spectral lines appearing
on transition of excited Li atoms from the state 3§ down to the
ground state 2§. The Rydberg corrections for the S and P terms
are —0.41 and —0.04.

6.101. The wavelengths of the yellow doublet components of the
resonance Na line caused by the transition 3P — 3§ are equal to
589.00 and 589.56 nm. Find the splitting of the 3P term in eV units.

6.102. The first line of the sharp series of atomic cesium is a doub-
let with wavelengths 1358.8 and 1469.5 nm. Find the frequency
intervals (in rad/s units) between the components of the sequent
lines of that series.

6.103. Write the spectral designations of the terms of the hydrogen
atom3whose electron is in the state with principal quantum number
n = 3.

6.104. How many and which values of the quantum number J
can an atom possess in the state with quantum numbers S and L
equal respectively to

(a) 2 and 3; (b) 3 and 3; (c) 5/2 and 2?

6.105. Find the possible values of total angular momenta of
atoms in the states *P and D.

6.106. Find the greatest possible total angular momentum and
the corresponding spectral designation of the term

(a) of a Na atom whose valence electron possesses the principal
quantum number n = 4;

(b) of an atom with electronic configuration 1s*2p3d.

6.107. It is known that in ¥ and D states the number of possible
values of the quantum number J is the same and equal to five. Find
the spin angular momentum in these states.
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6.108. An atom is in the state whose multiplicity is three and the

total angular momentum is % )/ 20. What can the corresponding
quantum number L be equal to?

6.109. Find the possible multiplicities ® of the terms of the
types

(a) *Dg; (b) *Pyy; () *Fi.

6.110. A certain atom has three electrons (s, p, and d), in addition
to filled shells, and is in a state with the greatest possible total
mechanical moment for a given configuration. In the corresponding
vector model of the atom find the angle between the spin momentum
and the total angular momentum of the given atom.

6.111. An atom possessing the total angular momentum E)6
is in the state with spin quantum number S = 1. In the correspond-
ing vector model the angle between the spin momentum and the total
angular momentum is 6 = 73.2°. Write the spectral symbol for
the term of that state.

6.112. Write the spectral symbols for the terms of a two-electron
system consisting of one p electron and one d electron.

6.113. A system comprises an atom in 2P, state and a d electron.
Find the possible spectral terms of that system.

6.114. Find out which of the following transitions are forbidden
by the selection rules: 2Dy, — 2Py, 3Py — %Sy, 32F3—3P,,
4F10 = *Dsjo.

6.115. Determine the overall degeneracy of a 3D state of a Li
atom. What is the physical meaning of that value?

6.116. Find the degeneracy of the states 2P, 3D, and *F possessing
the greatest possible values of the total angular ~momentum.

6.117. Write the spectral designation of the term whose degeneracy
is equal to seven and the quantum numbers L and S are interrelated
as L = 38.

6.118. What element has the atom whose K, L, and M shells
and 4s subshell are filled completely and 4p subshell is half-filled?

6.119. Using the Hund rules, find the basic term of the atom whose
partially filled subshell contains

(a) three p electrons; (b) four p electrons.

6.120. Using the Hund rules, find the total angular momentum
of the atom in the ground state whose partially filled subshell
contains

(a) three d electrons; (b) seven d electrons.

6.121. Making use of the Hund rules, find the number of electrons
in the only partially filled subshell of the atom whose basic term is

(8) °Fy; (B) *Pyszi () ®Ssa.

6.122. Using the Hund rules, write the spectral symbol of the
basic term of the atom whose only partially filled subshell

(a) is filled by 1/3, and S =1,

(b) is filled by 70%, and S = 3/2.

6.123. The only partially filled subshell of a certain atom contains
three electrons, the basic term of the atom having L = 3. Using
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the Hund rules, write the spectral symbol of the ground state of
the given atom.

6.124. Using the Hund rules, find the magnetic moment of the
ground state of the atom whose open subshell is half-filled with five
electrons.

6.125. What fraction of hydrogen atoms is in the state with the
principal quantum number n = 2 at a temperature 7' = 3000 K?

6.126. Find the ratio of the number of atoms of gaseous sodium
in the state 3P to that in the ground state 35 at a temperature 7 =
= 2400 K. The spectral line corresponding to the transition 3P —
— 38 is known to have the wavelength A = 589 nm.

6.127. Calculate the mean lifetime of excited atoms if it is known
that the intensity of the spectral line appearing due to transition
to the ground state diminishes by a factor n = 25 over a distance
! = 2.5 mm along the stream of atoms whose velocity is v =
= 600 m/s.

6.128. Rarefied Hg gas whose atoms are practically all in the
ground state was lighted by a mercury lamp emitting a resonance
line of wavelength A = 253.65 nm. As a result, the radiation power
of Hg gas at that wavelength turned out to be P = 35 mW. Find
the number of atoms in the state of resonance excitation whose
mean lifetime is T = 0.15 ps.

6.129. Atomic lithium of concentration n = 3.6-101% cm=® is at
a temperature I' = 1500 K. In this case the power emitted at the
resonant line’s wavelength A = 671 nm (2P — 2S§) per unit volume
of gas is equal to P = 0.30 W/cm?. Find the mean lifetime of Li
atoms in the resonance excitation state.

6.130. Atomic hydrogen is in thermodynamic equilibrium with
its radiation. Find:

(a) the ratio of probabilities of induced and spontaneous radia-
tions of the atoms from the level 2P at a temperature 7 = 3000 K;

(b) the temperature at which these probabilities become equal.

6.131. A beam of light of frequency o, equal to the resonant
frequency of transition of atoms of gas, passes through that gas
heated to temperature 7. In this case hw 3> &T.Taking into account
induced radiation, demonstrate that the absorption coefficient of
the gas x varies as x = %, (1 — e~"@/tT), where %, is the absorption
coefficient for 7' — 0.

6.132. The wavelength of a resonant mercury line is A =
= 253.65 nm. The mean lifetime of mercury atoms in the state of
resonance excitation is T = 0.15 ps. Evaluate the ratio of the
Doppler line broadening to the natural linewidth at a gas tempera-
ture T = 300 K.

6.133. Find the wavelength of the K, line in copper (Z = 29) if
the wavelength of the K, line in iron (Z = 26) is known to be equal
to 193 pm.

6.134. Proceeding from Moseley’s law find:

(a) the wavelength of the K, line in aluminium and cobalt:
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(b) the difference in binding energies of K and L electrons in
vanadium.

6.135. How many elements are there in a row between those
whose wavelengths of K, lines are equal to 250 and 179 pm?

6.136. Find the voltage applied to an X-ray tube with nickel
anticathode if the wavelength difference between the K, line and
the short-wave cut-off of the continuous X-ray spectrum is equal
to 84 pm.

6.137. At a certain voltage applied to an X-ray tube with alumi-
nium anticathode the short-wave cut-off wavelength of the contin-
uous X-ray spectrum is equal to 0.50 nm. Will the K series of the
characteristic spectrum whose excitation potential is equal to
1.56 kV be also observed in this case?

6.138. When the voltage applied to an X-ray tube increased from
V,=10 kV to V, =20 kV, the wavelength interval between
the K, line and the short-wave cut-off of the continuous X-ray
spectrum increases by a factor n = 3.0. Find the atomic number of
the element of which the tube's anticathode is made.

6.139. What metal has in its absorption spectrum the difference
between the frequencies of X-ray K and L absorption edges equal
to Aw = 6.85.10'8 s-17?

6.140. Calculate the binding energy of a K eleciron in vanadium
whose L absorption edge has the wavelength A, = 2.4 nm.

6.141. Find the binding energy of an L electron in titanium if
the wavelength difference between the first line of the K series and
its short-wave cut-off is AL = 26 pm.

6.142. Find the kinetic energy and the velocity of the photoelect-
rons liberated by K, radiation of zinc from the K shell of iron whose
K band absorption edge wavelength is Ax = 174 pm.

6.143. Calculate the Landé g factor for atoms

(a) in S states; (b) in singlet states.

6.144. Calculate the Landé g factor for the following terms:

() ®Fy/q; (b) Dyjs; (c) 3Fy; (d) °Py; (e) °P,,.

6.145. Calculate the magnetic moment of an atom (in Bohr
magnetons)

(a) in F state;

(b) in 2Dy, state;

(¢) in the state in which § = 1, L =2, and Landé factor g = 4/3.

6.146. Determine the spin angular momentum of an atom in
the state D, if the maximum value of the magnetic moment pro-
jection in that state is equal to four Bohr magnetons.

6.147. An atom in the state with quantum numbers L = 2,
S = 1.slocated in a weak magnetic field. Find its magnetic moment
if the least possible angle between the angular momentum and
the field direction is known to be equal to 30°.

6.148. A valence electron in a sodium atom is in the state with
principal quantum number n = 3, with the total angular momentum
being the greatest possible. What is its magnetic moment in that state?
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6.149. An excited atom has the electronic configuration 1s*2s*2p3d
being in the state with the greatest possible total angular momentum.
Find the magnetic moment of the atom in that state.

6.150. Find the total angular momentum of an atom in the state
with § = 3/2 and L = 2 if its magnetic moment is known to be
equal to zero.

6.151. A certain atom is in the state in which § = 2, the total

angular momentum M = V/ 2k, and the magnetic moment is equal
to zero. Write the spectral symbol of the corresponding
term.

6.152. An atom in the state 2P, is located in the external magne-
tic field of induction B = 1.0 kG. In terms of the vector model find
the angular precession velocity of the total angular momentum of
that atom.

6.153. An atom in the state ®P,;, is located on the axis of a loop
of radius r = 5 c¢m carrying a current / = 10 A. The distance be-
tween the atom and the centre of the loop is equal to the radius of
the latter. How great may be the maximum force that the magnetic
field of that current exerts on the atom?

6.154. A hydrogen atom in the normal state is located at a distance
r =25 cm from a long straight conductor carrying a current
I = 10 A. Find the force acting on the atom.

6.155. A narrow stream of vanadium atoms in the ground state
4F,,, is passed through a transverse strongly inhomogeneous magnet-
ic field of length I, = 5.0 cm as in the Stern-Gerlach experiment.
The beam splitting is observed on a screen located at a distance
l, = 15 em from the magnet. The kinetic energy of the atoms is
T = 22 MeV. At what value of the gradient of the magnetic field
induction B is the distance between the extreme components of
the split beam on the screen equal to § = 2.0 mm?

6.156. Into what number of sublevels are the following terms
split in a weak magnetic field:

(8) %Py (b) *Fyy; (0) “Dya?

6.157. An atom is located in a magnetic field of induction B =
= 2.50 kG. Find the value of the total splitting of the following
terms (expressed in eV units):

(a) 'D; (b) °F,.

6.158. What kind of Zeeman effect, normal or anomalous, is
observed in a weak magnetic field in the case of spectral lines caused
by the following transitions:

(a) *P —18; (b) 2Dy)y — *Pgp; (¢) °Dy, — 3P, (d) 3, — 5H,?

6.159. Determine the spectral symbol of an atomic singlet term
if the total splitting of that term in a weak magnetic field of induc-
tion B = 3.0 kG amounts to AE =104 peV.

6.160. It is known that a spectral line A = 612 nm of an atom
is caused by a transition between singlet terms. Calculate the inter-
val AA between the extreme components of that line in the magnetic
field with induction B = 10.0 kG.
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6.161. Find the minimum magnitude of the magnetic field induc-
tion B at which a spectral instrument with resolving power A/8A =
= 1.0-10% is capable of resolving the components of the spectral
line A = 536 nm caused by a transition between singlet terms. The
observation line is at right angles to the magnetic field direction.

6.162. A spectral line caused by the transition 3D; — 3P, expe-
riences the Zeeman splitting in a weak magnetic field. When observed
at right angles to the magnetic field direction, the interval between
the neighbouring components of the split line is Aw = 1.32-10%° s-1
Find the magnetic field induction B at the point where the source
is located.

6.163. The wavelengths of the Na yellow doublet (*P — 2§) are
equal to 589.59 and 589.00 nm. Find:

(a) the ratio of the intervals between neighbouring sublevels of
the Zeeman splitting of the terms ?Py,, and ?P,,, in a weak magnetic
field; . .

(b) the magnetic field induction B at which the interval between
neighbouring sublevels of the Zeeman splitting of the term 2P,
is 3 = 50 times smaller than the natural

splitting of the term 2P. N
6.164. Draw a diagram of permitted Kz

transitions between the terms®P;,,and 2§y, , <__}—_”
in a weak magnetic field. Find the displace- M

ments (in rad/s units) of Zeeman com ponents ﬂy/sm

of that line in a magnetic field B = 4.5 kG. .

6.165. The same spectral line undergoing Fig. 6.9.
anomalous Zeeman splitting is observed in
direction 7 and, after reflection from the mirror M (Fig. 6.9), in
direction 2. How many Zeeman components are observed in both
directions if the spectral line is caused by the transition

(@) 2Pg/y = 28y/9; (b) PPy—-38)?

6.166. Calculate the total splitting Aw of the spectral line 3Dg —
—> 3P, in a weak magnetic field with induction B = 3.4 kG.

6.4. MOLECULES AND CRYSTALS
e Rotational energy of a diatomic molecule:
2
Ey— % J (T4, (6.42)

where I is the molecule’s moment of inertia.
e Vibrational energy of a diatomic molecule:

Eo=ho (v+—;—), (6.4b)

where o is the natural frequency of oscillations of the molecule.
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e Mean energy of a quantum harmonic oscillator at a temperature T:

ho 10
<E>=2_+—"_ehm/w__1 . (6.4c)
e Debye formula for molar vibrational energy of a crystal:
1 T \4 e 3d,
xzax
U=93@[-8—+(§) S Ex__‘T] (6.4d)
0
where © is the Debye temperature,
0 = homax/k. (6.4¢0)
e Molar vibrational heat capacity of a crystal for T ¢ ©:
12, (T \3
e Distribution of free electrons in metal in the vicinity of the absolute
Z€ero:
C Vimd? o

where dn is the concentration of electrons whose energy falls within the inter-
val E, E + dE. The energy E is counted off the bottom of the conduction band.

e Fermi level at T = 0:

2
Ep:%; (3n2n)?/3 (6.4h)

where n is the concentration of free electrons in metal.

6.167. Determine the angular rotation velocity of an S, molecule
promoted to the first excited rotational level if the distance between
its nuclei is d = 189 pm.

6.168. For an HCI molecule find the rotational quantum numbers
of two neighbouring levels whose energies differ by 7.86 meV. The
nuclei of the molecule are separated by the distance of 127.5 pm.

6.169. Find the angular momentum of an oxygen molecule whose
rotational energy is £ = 2.16 meV and the distance between the
nuclei is d = 121 pm.

6.170. Show that the frequency intervals between the neighbour-
ing spectral lines of a true rotational spectrum of a diatomic molecule
are equal. Find the moment of inertia and the distance between the
nuclei of a CH molecule if the intervals between the neighbouring
lines of the true rotational spectrum of these molecules are equal to
Aw = 5.47-10'12 g-1,

6.171. For an HF molecule find the number of rotational levels
located between the zeroth and first excited vibrational levels assum-
ing rotational states to be independent of vibrational ones. The
natural vibration frequency of this molecule is equal to
7.79-10" rad/s, and the distance between the nuclei is 91.7 pm.
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6.172. Evaluate how many lines there are in a true rotational
spectrum of CO molecules whose natural vibration frequency is
o = 4.09.-10" s-1 and moment of inertia / = 1.44-10-3° g.cm?.

6.173. Find the number of rotational levels per unit energy inter-
val, dN/dE, for a diatomic molecule as a function of rotational
energy E. Calculate that magnitude for an iodine molecule in the
state with rotational quantum number J = 10. The distance between
the nuclei of that molecule is equal to 267 pm.

6.174. Find the ratio of energies required to excite a diatomic
molecule to the first vibrational and to the first rotational level.
Calculate that ratio for the following molecules:

Molecule o, 1014571 d, pm
(a) Hy 8.3 74
(b) HI 4,35 160
© 1, 0 40 267

Here o is the natural vibration frequency of a molecule, d is the
distance between nuclei.

6.175. The natural vibration frequency of a hydrogen molecule
is equal to 8.25.10 s~1 | the distance between the nuclei is 74 pm.
Find the ratio of the number of these molecules at the first excited
vibrational level (v = 1) to the number of molecules at the first
excited rotational level (J = 1) at a temperature T = 875 K. It
should be remembered that the degeneracy of rotational levels is
equal to 2J + 1.

6.176. Derive Eq. (6.4c), making use of the Boltzmann distribu-
tion. From Eq. (6.4c) obtain the expression for molar vibration
heat capacity Cvy ,;; of diatomic gas. Calculate Cy ;5 for Cl, gas
at the temperature 300 K. The natural vibration frequency of these
molecules is equal to 1.064 - 1014 s-1,

6.177. In the middle of the rotation-vibration band of emission
spectrum of HCl molecule, where the “zeroth” line is forbidden by
the selection rules, the interval between neighbouring lines is Aw =
= 0.79.10" s~1, Calculate the distance between the nuclei of an
HCI1 molecule.

6.178. Calculate the wavelengths of the red and violet satellites,
closest to the fixed line, in the vibration spectrum of Raman scatter-
ing by F, molecules if the incident light wavelength is equal to A, =
= 404.7 nm and the natural vibration frequency of the molecule
is o = 2.15-1014 g-1,

6.179. Find the natural vibration frequency and the quasielastic
force coefficient of an S, molecule if the wavelengths of the red and
violet satellites, closest to the fixed line, in the vibration spectrum
‘of Raman scattering are equal to 346.6 and 330.0 nm.

6.180. Find the ratio of intensities of the violet and red satellites,
closest to the fixed line, in the vibration spectrum of Raman scatter-
ing by Cl; molecules at a temperature T = 300 K if the natural
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vibration frequency of these molecules is w = 1.06-10* s-1,
By what factor will this ratio change if the temperature is doubled?

6.181. Consider the possible vibration modes in the following
linear molecules:

(ay CO, (0—C—-0); (b) C,H, (H—C—C—H).

6.182. Find the number of natural transverse vibrations of a string
of length [ in the frequency interval from o to @ + do if the propa-
gation velocity of vibrationsis equal to v. All vibrations are supposed
to occur in one plane.

6.183. There is a square membrane of area S. Find the number of
natural vibrations perpendicular to its plane in the frequency interval
from © to @ 4 do if the propagation velocity of vibrations is equal
to v.

6.184. Find the number of natural transverse vibrations of a right-
angled parallelepiped of volume V in the frequency interval from
©® to © + do if the propagation velocity of vibrations is equal to v.

6.185. Assuming the propagation velocities of longitudinal and
transverse vibrations to be the same and equal to v, find the Debye
temperature

(a) for a unidimensional crystal, i.e. a chain of identical atoms,
incorporating n, atoms per unit length;

(b) for a two-dimensional crystal, i.e. a plane square grid consist-
ing of identical atoms, containing r, atoms per unit area;

(c) for a simple cubic lattice consisting of identical atoms, con-
taining n, atoms per unit volume.

6.186. Calculate the Debye temperature for iron in which the
propagation velocities of longitudinal and transverse vibrations are
equal to 5.85 and 3.23 km/s respectively.

6.187. Evaluate the propagation velocity of acoustic vibrations
in aluminium whose Debye temperature is 6 = 396 K.

6.188. Derive the formula expressing molar heat capacity of
a unidimensional crystal, a chain of identical atoms, as a function
of temperature 7 if the Debye temperature of the chain is equal to ©.
Simplify the obtained expression for the case T > 0.

6.189. In a chain of identical atoms the vibration frequency w
depends on wave number k& as © = @pq, Sin (ka/2), where ©m.x
is the maximum vibration frequency, & = 2n/A is the wave number
corresponding to frequency w, a is the distance between neighbour-
ing atoms. Making use of this dispersion relation, find the dependence
of the number of longitudinal vibrations per unit frequency interval
on ©, i.e. dN/dw, if the length of the chain is I. Having obtained
dN/dw, find the total number N of possible longitudinal vibrations
of the chain.

6.190. Calculate the zero-point energy per one gram of copper
whose Debye temperature is © = 330 K.

6.191. Fig. 6.10 shows heat capacity of a crystal vs temperature
in terms of the Debye theory. Here C; is classical heat capacity,
0 is the Debye temperature. Using this plot, find:
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(a) the Debye temperature for silver if at a temperature 7' = 65 K
its molar heat capacity is equal to 15 J/(mol-K);

(b) the molar heat capacity of aluminium at 7 = 80 K if at
7 = 250 K it is equal to 22.4 J/(mol-K);

(¢) the maximum vibration frequency for copper whose heat
capacity at T = 125 K differs from the classical value by 25%.

6fCet
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Fig. 6.10.

6.192. Demonstrate that molar heat capacity of a crystal at
a temperature 7 < ©, where © is the Debye temperature, is defined
by Eq. (6.4f).

6.193. Can one consider the temperatures 20 and 30 K as low for
a crystal whose heat capacities at these temperatures are equal
to 0.226 and 0.760 J/(mol-K)?

6.194. Calculate the mean zero-point energy per one oscillator
of a crystal in terms of the Debye theory if the Debye temperature
of the crystal is equal to ©.

6.195. Draw the vibration energy of a crystal as a function of
frequency (neglecting the zero-point vibrations). Consider two cases:
T = 0/2 and T = 6/4, where © is the Debye temperature.

6.196. Evaluate the maximum values of energy and momentum
of a phonon (acoustie quantum) in copper whose Debye temperature
is equal to 330 K.

6.197. Employing Eq. (6.4g), find at T = O:

(a) the maximum kinetic energy of free electrons in a metal if
their concentration is equal to n;

(b) the mean kinetic energy of free electrons if their maximum
kinetic energy T ., is known.

6.198. What fraction (in per cent) of free electrons in a metal at
T = 0 has a kinetic energy exceeding half the maximum energy?

6.199. Find the number of free electrons per one sodium atom
at T = 0if the Fermi level is equal to Ef = 3.07 eV and the density
of sodium is 0.97 g/cm3.
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6.200. Up to what temperature has one to heat classical electronic
gas to make the mean energy of its electrons equal to that of free
electrons in copper at T =0? Only one free electron is supposed to
correspond to each copper atom.

6.201. Calculate the interval (in eV units) between neighbouring
levels of free electrons in a metal at T = O near the Fermi level,
if the concentration of free electrons is # = 2.0-10?2 cm~2 and the
volume of the metal is ¥V = 1.0 cm?.

6.202. Making use of Eq. (6.4g), find at T = O:

(a) the velocity distribution of free electrons;

(b) the ratio of the mean velocity of free electrons to their maxi-
mum velocity.

6.203. On the basis of Eq. (6.4g) find the number of free electrons
in a metal at 7 = 0 as a function of de Broglie wavelengths.

6.204. Calculate the electronic gas pressure in metallic sodium,
at T = 0, in which the concentration of free electrons is n =
= 2.5.-10%2 ¢cm~3. Use the equation for the pressure of ideal gas.

6.205. The increase in temperature of a cathode in electronic tube
by AT = 1.0 K from the value T = 2000 K results in the increase
of saturation current by m = 1.4%. Find the work function of
electron for the material of the cathode.

6.206. Find the refractive index of metallic sodium for electrons
with kinetic energy T = 135 eV. Only one free electron is assumed
to correspond to each sodium atom.

6.207. Find the minimum energy of electron-hole pair formation
in an impurity-free semiconductor whose electric conductance
increases = 5.0 times when the temperature increases from T, =
= 300K to T, = 400 K.

6.208. At very low temperatures the photoelectric threshold short
wavelength in an impurity-free germanium is equal to Ay = 1.7 pm.
Find the temperature coefficient of resistance of this germanium
sample at room temperature.

6.209. Fig. 6.11 illustrates logarithmic electric conductance as
a function of reciprocal temperature (7T in kK units) for some

ne
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n-type semiconductor. Using this plot, find the width of the forbid-
den band of the semiconductor and the activation energy of donor
levels.

6.240. The resistivity of an impurity-free semiconductor at room
temperature is p = 50 Q-cm. It becomes equal to p; = 40 Q.cm
when the semiconductor is illuminated with light, and ¢ = 8 ms
after switching off the light source the resistivity becomes equal to
p, = 45 Q.cm. Find the mean lifetime of conduction electrons and
holes.

6.211. In Hall effect measurements a plate of width 2 = 10 mm
and length ! = 50 mm made of p-type semiconductor was placed
in a magnetic field with induction B = 5.0 kG. A potential differ-
ence ¥ = 10 V was applied across the edges of the plate. In this
case the Hall field is g = 50 mV and resistivity p = 2.5 Q-cm.
Find the concentration of holes and hole mobility.

6.212. In Hall effect measurements in a magnetic field with
induction B = 5.0 kG the transverse electric field strength in an
impurity-free germanium turned out to be 1 = 10 times less than
the longitudinal electric field strength. Find the difference in the
mobilities of conduction electrons and holes in the given semicon-
ductor.

6.213. The Hall effect turned out to be not observable in a semi-
conductor whose conduction electron mobility was n = 2.0 times
that of the hole mobility. Find the ratio of hole and conduction
electron concentrations in that semiconductor.

6.5. RADIOACTIVITY
e Fundamental law of radioactive decay:

N=Nge~M. (6.52)
e Relation between the decay constant A, the mean lifetime T, and the
half-life 7
1 In2

=t 112 (6.5b)

o Specific activity is the activity of a unit mass ¢f a radioisotope.

6.214. Knowing the decay constant A of a nucleus, find:

(a) the probability of decay of the nucleus during the time from O
to ¢,

(b) the mean lifetime v of the nucleus.

6.215. What fraction of the radioactive cobalt nuclei whose half-
life is 71.3 days decays during a month?

6.216. How many beta-particles are emitted during one hour by
1.0 pg of Na® radionuclide whose half-life is 15 hours?

6.217. To investigate the beta-decay of Mg?® radionuclide, a coun-
ter was activated at the moment ¢ = 0. It registered N, beta-parti-
cles by a moment ¢;,=2.0s, and by a moment ¢, = 3¢, the number
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of registered beta-particles was 2.66 times greater. Find the mean
lifetime of the given nuclei.

6.218. The activity of a certain preparation decreases 2.5 times
after 7.0 days. Find its half-life.

6.219. At the initial moment the activity of a certain radionuclide
totalled 650 particles per minute. What will be the activity of the
preparation after half its half-life period?

6.220. Find the decay constant and the mean lifetime of Co®
radionuclide if its activity is known to decrease 4.0% per hour.
The decay product is nonradioactive.

6.221. A U?®S® preparation of mass 1.0 g emits 1.24-10% alpha-
particles per second. Find the half-life of this nuclide and the activity
of the preparation.

6.222. Determine the age of ancient wooden items if it is known
that the specific activity of C!* nuclide in them amounts to 3/5 of
that in lately felled trees. The half-life of C!* nuclei is 5570 years.

6.223. In a uranium ore the ratio of U?*® nuclei to Pb2% nuclei
is = 2.8. Evaluate the age of the ore, assuming all the lead Pb?
to be a final decay product of the uranium series. The half-life of
U8 nuclei is 4.5-10° years.

6.224. Calculate the specific activities of Na?* and U?% nuclides
whose half-lifes are 15 hours and 7.1-108 years respectively.

6.225. A small amount of solution containing Na?* radionuclide
with activity A = 2.0-10% disintegrations per second was injected
in the bloodstream of a man. The activity of 1 cm?® of blood sample
taken ¢ = 5.0 hours later turned out to be A" = 16 disintegrations
per minute per cm3. The half-life of the radionuclide is T = 15 hours.
Find the volume of the man’s blood.

6.226. The specific activity of a preparation consisting of radio-
active Co® and nonradioactive Co® is equal to 2.2.-10'2 dis/(s-g).
The half-life of Co®® is 71.3 days. Find the ratio of the mass of radio-
active cobalt in that preparation to the total mass of the preparation
(in per cent).

6.227. A certain preparation includes two beta-active components
with different half-lifes. The measurements resulted in the following
dependence of the natural logarithm of preparation activity on
time ¢ expressed in hours:

t 0 1 2 3 5 7 10 14 20
In A 4.10 3.60 3.10 2.60 2.06 1.82 1.80 1.32 0.90

Find the half-lifes of both components and the ratio of radioactive
nuclei of these components at the moment ¢ = 0.

6.228. A P32 radionuclide with half-life 7 = 14.3 days is produced
in a reactor at a constant rate ¢ = 2.7-10° nuclei per second. How
soon after the beginning of production of that radionuclide will its
activity be equal to 4 = 1.0-10° dis/s?

6.229. A radionuclide 4; with decay constant A; transforms into
a radionuclide 4, with decay constant A,. Assuming that at the
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initial moment the preparation contained only the radionuclide 4,,
find:

(a) the equation describing accumulation of the radionuclide 4,
with time; ) )

(b) the time interval after which the activity of radionuclide 4,
reaches the maximum value.

6.230. Solve the foregoing problem if A, = A, = A.

6.231. A radionuclide 4, goes through the transformation chain
A, - A, - A, (stable) with respective decay constants A, and Aq.
Assuming that at the initial moment the preparation .contamed
only the radionuclide A, equal in quantity to Ny, nuclei, find the
equation describing accumulation of the stable isotope 4.

6.232. A Bi?'° radionuclide decays via the chain

Bi210 —> Po210 — Ph206 (stable),
Ay Ay

where the decay constants are A, = 1.60.-10°¢ 7%, A, =
= 5.80-10-% s-% Calculate alpha- and beta-activities of the Bi*!°
preparation of mass 1.00 mg a month after its manufacture._ .

6.233. (a) What isotope is produced from the alpha-radioactive
Ra?%® as a result of five alpha-disintegrations and four p--disintegra-
tions?

(b) How many alpha- and B--decays does U2%3® experience before
turning finally into the stable Pb2% isotope? _

6.234. A stationary Pb?® nucleus emits an alpha-particle with
kinetic energy T, = 5.77 MeV. Find the recoil velocity of a_daught-
er nucleus, What fraction of the total energy liberated in this decay
is accounted for by the recoil energy of the daughter nucleus?

6.235. Find the amount of heat generated by 1.00 mg of .a.Pom
preparation during the mean lifetime period of these.nuc.lel if the
emitted alpha-particles are known to possess the kinetic energy
5.3 MeV and practically all daughter nuclei are formed directly in
the ground state. _

6.236. The alpha-decay of Po?!° nuclei (in the ground state) is
accompanied by emission of two groups of alpha—l_)ar_tlcles with
kinetic energies 5.30 and 4.50 MeV. Following the emission of tl_lese
particles the daughter nuclei are found in the ground and exc}ted
states. Find the energy of gamma-quanta emitted by the excited
nuclei.

6.237. The mean path length of alpha-particles in air lgnder
standard conditions is defined by the formula R = 0.98-107%" y; cm,
where v, (cm/s) is the initial velocity of an alpha—pa.rtic%e. Using
this formula, find for an alpha-particle with initial kinetic energy
7.0 MeV:

(a) its mean path length; )

(b) the average number of ion pairs formed by the given alpha-
particle over the whole path R as well as over its first half, assuming
the ion pair formation energy to be equal to 34 eV.
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6.238. Find the energy Q liberated in B~ and B*-decays and in
K-capture if the masses of the parent atom M, the daughter atom
M ; and an electron m are known.

6.239. Taking the values of atomic masses from the tables, find
the maximum kinetic energy of beta-particles emitted by Bel!®
nuclei and the corresponding kinetic energy of recoiling daughter
nuclei formed directly in the ground state.

6.240. Evaluate the amount of heat produced during a day by
a p--active Na* preparation of mass m = 1.0 mg. The beta-particles
are assumed to possess an average kinetic energy equal to 1/3 of the
highest possible energy of the given decay. The hali-life of Na% is
T = 15 hours.

6.241. Taking the values of atomic masses from the tables, calcu-
late the kinetic energies of a positron and a neutrino emitted by C!
nucleus for the case when the daughter nucleus does not
recoil.

6.242. Find the kinetic energy of the recoil nucleus in the positron-
ic decay of a N* nucleus for the case when the energy of positrons
is maximum.

6.243. From the tables of atomic masses determine the velocity
of a nucleus appearing as a result of K-capture in a Be” atom provided
the daughter nucleus turns out to be in the ground state.

6.244. Passing down to the ground state, excited Ag!®® nuclei
emit either gamma quanta with energy 87 keV or K conversion
electrons whose binding energy is 26 keV. Find the velocity of these
electrons.

6.245. A free stationary Ir'® nucleus with excitation energy
E =129 keV passes to the ground state, emitting a gamma quan-
tum. Calculate the fractional change of gamma quanta energy due
to recoil of the nucleus.

6.246. What must be the relative velocity of a source and an
absorber consisting of free Ir'* nuclei to observe the maximum absorp-
tion of gamma quanta with energy & = 129 keV?

6.247. A source of gamma quanta is placed at a height & = 20 m
above an absorber. With what velocity should the source be displaced
upward to counterbalance completely the gravitational variation
of gamma quanta energy due to the Earth’s gravity at the point
where the absorber is located?

6.248. What is the minimum height to which a gamma quanta
source containing excited Zn® nuclei has to be raised for the gravi-
tational displacement of the Méssbauer line to exceed the line width
itself, when registered on the Earth’s surface? The registered gamma
quanta are known to have an energy & = 93 keV and appear on
transition of Zn%" nuclei to the ground state, and the mean lifetime
of the excited state is v = 14 ps.
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6.6. NUCLEAR REACTIONS

e Binding energy of a nucleus:
Ey=Zmy+ (4 — Z) my— M, (6.6a)

where Z is the charge of the nucleus (in units of ¢}, A is the mass number, my,
my, and M are the masses of a hydrogen atom, a neutron, and an atom corres:
ponding to the given nucleus. ] ]

In calculations the following formula is more convenient to use:

Ep=ZAg+ (4 — Z)A, — A, (6.6b)

where Ay, An, and A are the mass surpluses of a hydrogen atom, a neutron,

and an atom corresponding to the given nucleus.
o Energy diagram of a nuclear reaction

m4M—->M>mn+M4Q (6.6c)

is illustrated in Fig. 6.12, where m M and m’+ M’ are the sums of rest masses
of particles before and after the reaction, T and 7’ are the total kinetic ener-
gies of particles before and after the reaction
(in the frame of the centre of inertia), E* is 3
the excitation energy of the transx.tlonal R
nucleus, Q is the energy of the reaction, E
and E’ are the binding energies of the par-
ticles m and m’ in the transitional nucleus, Fr
1, 2, 3 are the energy levels of the transi- oy ~17 r
tional nucleus. ]

e Threshold (minimum) kinetic energy
of an incoming particle at which an endoer- £ £* e
gic nuclear reaction £

m+M
Tin=—p— 10! (6.6d)

becomes possible; here m and M are the
masses of the incoming particle and the
target nucleus.

6.249. An alpha-particle with kinetic energy T, = 7.0 MeV is
scattered elastically by an initially stationary Li® nucleus. Find
the kinetic energy of the recoil nucleus if the angle of divergence
of the two particles is 8 = 60°.

6.250. A neutron collides elastically with an initially stationary
deuteron. Find the fraction of the kinetic energy lost by the neutron

(a) in a head-on collision;

(b) in scattering at right angles.

6.251. Find the greatest possible angle through which a deuteron
is scattered as a result of elastic collision with an initially stationary

roton.
P 6.252. Assuming the radius of a nucleus to be equal to R =
= 0.13 34 pm, where 4 is its mass number, evaluate the density
of nuclei and the number of nucleons per unit volume of the nucleus.

6.253. Write missing symbols, denoted by z, in the following
nuclear reactions:

(a) B (z, a) Be®;
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(b) OV (d, n) z;

(c) Na® (p, x) Ne0;

(d) = (p, n) Ar*.

6.254. Demonstrate that the binding energy of a nucleus with
mass number 4 and charge Z can be found from Eq. (6.6b).

6.255. Find the binding energy of a nucleus consisting of equal
numbers of protons and neutrons and having the radius one and a half
times smaller than that of Al?" nucleus. :

6.256. Making use of the tables of atomic masses, find:

(a) the mean binding energy per one nucleon in O nucleus;

(b) the binding energy of a neutron and an alpha-particle in
a B! nucleus:

(c) the energy required for separation of an 0! nucleus into four
identical particles.

6.257. Find the difference in binding energies of a neutron and
a proton in a B! nucleus. Explain why there is the difference.

6.258. Find the energy required for separation of a Ne?’ nucleus
into two alpha-particles and a C** nucleus if it is known that the
binding energies per one nucleon in Ne??, He#, and C!? nuclei are
equal to 8.03, 7.07, and 7.68 MeV respectively.

6.259. Calculate in atomic mass units the mass of

(a) a Li® atom whose nucleus has the binding energy 41.3 MeV;

(b) a C!° nucleus whose binding energy per nucleon is equal to
6.04 MeV.

6.260. The nuclei involved in the nuclear reaction A4, 4 4, —
— A3 + A, have the binding energies E,, E,, E,, and E,. Find the
energy of this reaction.

6.261. Assuming that the splitting of a U?%¥® nucleus liberates the
energy of 200 MeV, find:

(a) the energy liberated in the fission of one kilogram of U?%¥
isotope, and the mass of coal with calorific value of 30 kJ/g which
is equivalent to that for one kg of U%5;

(b) the mass of U?% jsotope split during the explosion of the atomic
bomb with 30 kt trotyl equivalent if the calorific value of trotyl
is 4.1 kJ/g.

6.262. What amount of heat is liberated during the formation of
one gram of He* from deuterium H2? What mass of coal with calo-
rific value of 30 kJ/g is thermally equivalent to the magnitude
obtained?

6.263. Taking the values of atomic masses from the tables, calcu-
late the energy per nucleon which is liberated in the nuclear reaction
Li¢ 4 H? — 2He*. Compare the obtained magnitude with the energy
per nucleon liberated in the fission of U®3® nucleus.

6.264. Find the energy of the reaction Li” 4+ p — 2He* if the
binding energies per nucleon in Li? and He* nuclei are known to be
equal to 5.60 and 7.06 MeV respectively. ‘

6.265. Find the energy of the reaction N4 (o, p) O if the kinetic
energy of the incoming alpha-particle is T, = 4.0 MeV and the
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proton outgoing at an angle & = 60° to the motion direction of the
alpha-particle has a kinetic energy Ip = 2.09 MeV.

6.266. Making use of the tables of atomic masses, determine the
energies of the following reactions:

(a) Li” (p, n) Be;

(b) Be® (r, y) Be';

(c) Li” («, n) B,

(d) O (d, o) N,

6.267. Making use of the tables of atomic masses, find the velocity
with which the products of the reaction B! (r, a) Li’ come apart;
the reaction proceeds via interaction of very slow neutrons with
stationary boron nuclei.

6.268. Protons striking a stationary lithium target activate
a reaction Li7 (p, n) Be’. At what value of the proton’s kinetic
energy can the resulting neutron be stationary?

6.269. An alpha particle with kinetic energy T = 5.3 MeV
initiates a nuclear reaction Be® (x, n) C!? with energy yield Q =
= +5.7 MeV. Find the kinetic energy of the neutron outgoing at
right angles to the motion direction of the alpha-particle.

6.270. Protons with kinetic energy 7 =1.0 MeV striking a lith-
ium target induce a nuclear reaction p + Li’7 —2He% Find the
kinetic energy of each alpha-particle and the angle of their divergence
provided their motion directions are symmetrical with respect to
that of incoming protons.

6.271. A particle of mass m strikes a stationary nucleus of mass M
and activates an endoergic reaction. Demonstrate that the threshold
(minimal) kinetic energy required to initiate this reaction is defined
by Eq. (6.6d).

6.272. What kinetic energy must a proton possess to split a deuter-
on H? whose binding energy is E, = 2.2 MeV?

6.273. The irradiation of lithium and beryllium targets by a
monoergic stream of protons reveals that the reaction Li’(p, n)Be’ —
— 1.65 MeV is initiated whereas the reaction Be®(p, n)B® —1.85MeV
does not take place. Find the possible values of kinetic energy of
the protons.

6.274. To activate the reaction (r, o) with stationary B!! nuclei,
neutrons must have the threshold kinetic energy T, = 4.0 MeV.
Find the energy of this reaction.

6.275. Calculate the threshold kinetic energies of protons required
to activate the reactions (p, n) and (p, d) with Li” nuclei.

6.276. Using the tabular values of atomic masses, find the thresh-
old kinetic energy of an alpha particle required to activate the
nuclear reaction Li7 (a, n) B%. What is the velocity of the B!
nucleus in this case?

6.277. A neutron with kinetic energy I = 10 MeV activates
anuclear reaction C2 (r, a) Be? whose threshold is Ty, = 6.17 MeV.
Find the kinetic energy of the alpha-particles outgoing at right
angles to the incoming neutrons’ direction.
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6.278. How much, in per cent, dces the threshold energy of gam-
ma quantum exceed the binding energy of a deuteron (£, = 2.2 MeV)
in the reaction y + H? —n + p?

6.279. A proton with kinetic energy T = 1.5 MeV is captured
by a deuteron H2. Find the excitation energy of the formed nucleus.

6.280. The yield of the nuclear reaction C*3(d, »)N'* has maximum
magnitudes at the following values of kinetic energy T'; of bombard-
ing deuterons: 0.60, 0.90, 1.55, and 1.80 MeV. Making use of the
table of atomic masses, find the corresponding energy levels of the
transitional nucleus through which this reaction proceeds.

6.281. A narrow beam of thermal neutrons is attenuated n =
= 360 times after passing through a cadmium plate of thickness
d = 0.50 mm. Determine the effective cross-section of interaction
of these neutrons with cadmium nuclei.

6.282. Determine how many times the intensity of a narrow beam
of thermal neutrons will decrease after passing through the heavy
water layer of thickness d = 5.0 cm. The effective cross-sections of
interaction of deuterium and oxygen nuclei with thermal neutrons
are equal to ¢, = 7.0 b and o, = 4.2 b respectively.

6.283. A narrow beam of thermal neutrons passes through a plate
of iron whose absorption and scattering effective cross-sections are
equal to 0, = 2.5 b and o, = 11 b respectively. Find the fraction
of neutrons quitting the beam due to scattering if the thickness of
the plate is d = 0.50 cm.

6.284. The yield of a nuclear reaction producing radionuclides
may be described in two ways: either by the ratio w of the number
of nuclear reactions to the number of bombarding particles, or by
the quantity k, the ratio of the activity of the formed radionuclide
to the number of bombarding particles, Find:

(a) the half-life of the formed radionuclide, assuming w and %
to be known:

(b) the yield w of the reaction Li’(p, n)Be’ if after irradiation of
a lithium target by a beam of protons (over ¢ = 2.0 hours and with
beam current I = 10 pA) the activity of Be’ became equal to A =
= 1.35-1(8 dis/s and its half-life to T = 53 days.

6.285. Thermal neutrons fall normally on the surface of a thin
gold foil consisting of stable Au'®” nuclide. The neutron flux density
is J = 1.0-10' part./(s-cm?). The mass of the foil is m = 10 mg.
The neutron capture produces beta-active Au'® nuclei with half-life
T = 2.7 days. The effective capture cross-section is ¢ = 98 b.
Find:

(a) the irradiation time after which the number of Au'*’ nuclei
decreases by n = 1.0%;

(b) the maximum number of Au'® nuclei that can be formed dur-
ing protracted irradiation.

6.286. A thin foil of certain stable isotope is irradiated by thermal
neutrons falling normally on its surface. Due to the capture of
neutrons a radionuclide with decay constant A appears. Find the law
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describin_g accumulation of that radionuclide N (¢) per unit area
of th(_a foil’s surface. The neutron flux density is J, the number of
nuclei per unit area of the foil’s surface is r, and the effective cross-
section of formation of active nuclei is o.

6.287. A gold foil of mass m = 0.20 g was irradiated during
t = 6.0 hours by a thermal neutron flux falling normally on its
surface.. Fpllowing T = 12 hours after the completion of irradiation
the activity of the foil became equal to 4 = 1.9.-107 dis/s. Find
(t)l;le neu:cir_on i’l_ux denslity if the effective cross-section of formation

a radioactive nucleus i = -life i
o T 2T is 0 = 96 b, and the half-life is equal
) 6.288. H_0w many neutrons are there in the hundredth generation
if the fission process starts with N, = 1000 neutrons and takes
place in a medium with multiplication constant k¥ = 1.05?

6.289. Find the number of neutrons generated per unit time in
a uranium reactor whose thermal power is P = 100 MW if the
average number of.m.autrons liberated in each nuclear splitting is
\;—QOQdoMe%afch splitting is assumed to release an energy E =

6.290. In a thermal reactor the mean lifetime of one generation
of thermal neutrons is v = 0.10 s. Assuming the multiplication
constant to be equal to k = 1.010, find:

(a) how many times the number of neutrons in the reactor. and
consequently its power, will increase over t = 1.0 min; ,
_ (b) the period T of the reactor, i.e. the time period over which
1ts power increases e-fold.

6.7. ELEMENTARY PARTICLES

o Total energy and momentum of a relativistic particle:
E=me?+ T, pc=V T (T F 2mgc?), (6.7a)

where 7 is the kinetic energy of the particle.
e When examining collisions of particles it pays to use the invariant:
E2— p2c2? = mmict, (6.7b)

where E and p are the total energy and the total momentui i
to collision, mq is the rest mass of the formed particle. tuin of the system prior
e Threshold (minimal) kinetic energy of a particle m stril

. mini kin, i
particle M and activating the endoergic reaction m + M >m +grz'1l:l:atlonar¥

(myftmyf ... )2 :
my my + 211)4 (m +M) 6‘2, (6-70)

where m, M, my, m, are the rest masses i i
e of the respective particles.
e Quantum numbers classifying elementary partil():les: P

Tih=

Q, electric charge,
L, lepton charge,
B, baryon charge,
T, isotopic spin, T,, its projection,
S, strangeness, S = 2(0) — B,
Y, hypercharge, ¥ = B+ §.
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e Relation between quantum numbers of strongly interacting particles:

Q=T:+_’2’_=Tz+£%;§. (6.7d)

o Interactions of particles obey the laws of conservation of the Q, L and
B charges. In strong interactions the laws of conservation of S (or Y), T, and
its projection T, are also valid.

6.291. Calculate the kinetic energies of protons whose momenta
are 0.10, 1.0, and 10 GeV/c, where ¢ is the velocity of light.

6.292. Find the mean path travelled by pions whose kinetic
energy exceeds their rest energy n = 1.2 times. The mean lifetime
of very slow pions is T, = 25.5 ns.

6.293. Negative pions with kinetic energy T = 100 MeV travel
an average distance I = 11 m from their origin to decay. Find the
proper lifetime of these pions.

6.294. There is a narrow beam of negative pions with kinetic
energy T equal to the rest energy of these particles. Find the ratio
of fluxes at the sections of the beam separated by a distance ! =
= 20 m. The proper mean lifetime of these pions is 7o = 25.5 ns.

6.295. A stationary positive pion disintegrated into a muon and
a neutrino. Find the kinetic energy of the muon and the energy of
the neutrino.

6.296. Find the kinetic energy of a neutron emerging as a result
of the decay of a stationary £~ hyperon (£~ —n + n7).

6.297. A stationary positive muon disintegrated into a positron
and two neutrinos. Find the greatest possible kinetic energy of the
positron.

6.298. A stationary neutral particle disintegrated into a proton
with kinetic energy T = 5.3 MeV and a negative pion. Find the
mass of that particle. What is its name?

6.299. A negative pion with kinetic energy T = 50 MeV disinteg-
rated during its flight into a muon and a neutrino. Find the energy
of the neutrino outgoing at right angles to the pion’s motion direc-
tion.

6.300. A =+ hyperon with kinetic energy Ts = 320 MeV disinteg-
rated during its flight into a neutral particle and a positive pion
outgoing with kinetic energy T = 42 MeV at right angles to the
hyperon’s motion direction. Find the rest mass of the neutral particle
(in MeV units).

6.301. A neutral pion disintegrated during its flight into two
gamma quanta with equal energies. The angle of divergence of
gamma quanta is © = 60°. Find the kinetic energy of the pion and of
each gamma quantum.

6.302. A relativistic particle with rest mass m collides with
a stationary particle of mass M and activates a reaction leading to
formation of new particles: m + M —m, + m, + . . ., where the
rest masses of newly formed particles are written on the right-hand
side. Making use of the invariance of the quantity E? — p%?, dem-
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onstrate that the threshold kinetic energy of the particle m required
for this reaction is defined by Eq. (6.7¢).

6.303. A positron with kinetic energy 7 = 750 keV strikes a sta-
tionary free electron. As a result of annihilation, two gamma quanta
with equal energies appear. Find the angle of divergence between
them.

6.304. Find the threshold energy of gamma quantum required
to form

(a) an electron-positron pair in the field of a stationary electron;

(b) a pair of pions of opposite signs in the field of a stationary
proton.

6.305. Protons with kinetic energy 7T strike a stationary hydrogen
target. Find the threshold values of T for the following reactions:

@p+p—>p+p+p+p b)p+p—>p-+p+ad

6.306. A hydrogen target is bombarded by pions. Calculate the
threshold values of kinetic energies of these pions making possible
the following reactions:

(@ n~+p—>K*+4+ 2= (b) n® 4+ p - K+ + A"

6.307. Find the strangeness S and the hypercharge Y of a neutral
elementary particle whose isotopic spin projection is T, = +1/2
and baryon charge B = +1. What particle is this?

6.308. Which of the following processes are forbidden by the law
of conservation of lepton charge:

M n—->p+e +wv; (4 p+e —>n+v;

(2) ot —>p* 4+ e~ + et (5) p* —e* + v+

By n~ —>p~ 4 v; 6) K~ —>p- + v?

6.309. Which of the following processes are forbidden by the law
of conservation of strangeness:

(1) a= +p >3-+ K% (9 n+p—>A+ 3+

@) n-+p 32+t 4+ K- Oy ni-+n—>8 4+ K*+ K-

@n~+p—>K*+K +n; 6) K-+p—>Q + K*+ K%

6.310. Indicate the reasons why the following processes are for-
bidden:

(1) 2- > A 4 5 (4 n+p—>Z+4 AY

@) n-+p—>K*+ K-, () i~ —>p~ + et + &7

@) K- +n—>Q + K*+ K% (6) p~ —>e~ + v, + Vi

ANSWERS AND SOLUTIONS

Taltp=0/V 2—1=1.8.
9. 0 =arcsin (1/n) 4+ n/2 = 120°.
1.10. I=vt )/ 2(1 —sinB) =22 m.
141, 1 = (v +v,)V v,0,/g =25 m.
1.42. ¢ = 2a/3v.
1.13. It is seen from Fig. 1a that the points 4 and B converge
with velocity v — u cos a, where the angle o varies with time. The

14. v = /21 = 3.0 km per hour.

1.2. ) = 2v, (v, + v)/(20y + v, + v,).

1.3. At=1V1—4@)/wrt=15 s.

1.4. (a) 10 cm/s; (b) 25 cm/s; (¢) ¢, = 16 s.

1.5. vy — )1y — 1yl = (vy — V)| Vg — vy |.

1.6. V=V v+ 12+ 2w cos @ =~ 40 km per hour, ¢’ =19°.
17/

1.7. u=(1—v§/v’2;_1/2—1 =3.0 km per hour.

1.8.

1.9

6 >

e AL 4

T~
i\
Q\
D~ N W o W
AR
\
Vi~

¢ 7723‘/557
(a) (6)

Fig. 1.

points merge provided the following two conditions are met:
T T
S (v—ucosa)dt=1, Svcosaat:ut,
0
where 1 is the sought time. It follows from these two equations that.
T = v/ — u?).
44, 2, — 2, = I — wr (¢ + 1/2) = 0.24 km. Toward the train
with velocity V = 4.0 m/s.
1.15. (a) 0.7 s; (b) 0.7 and 1.3 m respectively.
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b+l R [ vy —1ov; |

1.16. tm——v§+v§ s lmin Verw

1.147. CD=1/}/ 2 —1.

1.18. See Fig. 1b.

1.19. (a) (v) = nR/x = 50 cm/s; (b) [{v)| = 2R/t = 32 cm/s;
(c) |{w)| = 2aR/t® = 10 cm/s2.

1.20. (a) v = a(1 — 2at), w = —2aa = const; (b) At = 1/a,
s = al2a.

1.21. (a) z=wvot (1 —1t/27),2=0.24,0 and — 4.0 m;

(1 —t/2t) vt for I<T,
(by 1.1, 9 and 11 s; (c) s—{
24 and 34 cm respectively. _

1.22. (a) v=02/2, w=02/2; (b) W=als/2

1.23. (a) s=(/sa)vd’? (b) t=2V va.

1.24. (a) y= —ax?b/a?;, (b) vVv=ai—20tj, w= —20bj, v=
=V aZ T 4b2%2, w = 9b; (¢) tan a=a/2bt; (d) (v)y=ai—btj, (V)=
=V aZ b3

1.25. (a) y=z—z%ala; (b)) v=al {1+ {—2u)2, w=20a=
=const; (¢) f,=1/a.

1.26. (a) s=awt: (b)n/2.

1.27. vo=} (1 4 a2) w/2b.

1.28. (a) r = vyt + gi?/2; (b) (v);=
= vy + gt/2, (v) = v, — g (vog)/gt

1.29. (a) T = 2 (v,/g) sin a;

b) h= (v;/2g) sin*a, [ = (v¥/g)sin 2a, )

I
o = 76° 72 Tt
Ec) = z tan a — (g/2v] cos® a) z% ~gsin of Y

y
d) Ry = vi/g cos a, R, = (v¥/g) cos?a.
1.30. See Fig. 2. Fig. 2.
1.31. | = 8h sin a.
1.32. 0.41 or 0.71 min later, depending on the initial angle.

_ 20 sin(8,—6,)
1..33- At—-g—m—11 S.

1.34. () z=(a/20) y% (b) w=avy, w;=a2y/V 1+ (ay/ve)®
wa=ave/V T (ay/vg)2.

1.35. (8) y = (b/2a)2%, (b)) R = v¥w,= ¥V P —wi=
= (a/b) [1 + (zbla)?]®/2.

1.36. v=1V 2az.

1.37. w=a V' 1+ (47n)2 =0.8 mys2.

1.38. (a) v = vo/(1 + vet/R) = vee~¥/R; (b) w=} 2 v’/ Re?s/R=
=}/ 2v¥R.

1.39. tan a = 2s/R.

1.40. (a) wy= a202/R = 2.6 m/s2, W, =aw?=3.2 m/s?; (b) wy;n =
=aw? | 1—(R/20)2=2.5 m/s?, l,=4+a )/ 1 — R?/2a2=4-0.37 m.
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(141 —t/t)vet/2 for (7.

1.41. R=a3/2bs, w=a V1 + (4bs?/ad)=.

1.42. (a) w = 2a1?, R = Y/,a; (b) w = bv?*/a®, R = a?/b.

1.43. v = 2R = 0.40 m/s, w = 4Rw? = 0.32 m/s.

1.44. w=(v/t) V1 +4a%*=0.7 m/s2.

1.45. @ =2anv/l=2.0-103 rad/s.

1.46. (a) (@)=2a/3=4 rad/s, (B)=1) 3ab=6 rad/s®; (b) p=
=2V 3ab=12 rad/s2.

1.47. t="la) tana =7 s.

1.48. {0) = w,/3.

1.49. (a) 9 = (1 — e~*) wy/a; (b) © = we-.

1.50. ®,= =)/ 2B, sin @, see Fig. 3.

1.51. (a) y=v2/Bz (hyperbola); (b) y= |/ 2wz/w (parabola).

1.52. (a) w, = v¥R = 2.0 m/s?, the
vector w, is permanently directed to the
centre of the wheel; (b) s = 8R = 4.0 m.

1.53. (a) v,=2wt=10.0 cm/s, vy=
=)2wt=71 cm/s, v,=0; (b) w,=
=2w )1 F (W2R):=5.6 cm/s?, wy—
=wV1+(1—w¥R)Z=2.5 cm/s?, w,—
=w??/R =2.5 cm/s?,

1.54. Ry=4r, Rz=2V2r.

1.35. o=V ol +0l=5 rad/s, P=w0,=12 rad/s?.

1.56. (3) @ =at V1 4 (bt/a)2=8 rad/s, P=al/ 1+ (2bt/a)z=
=1.3 rad/s% (b) 17°.

1.57. (8) @ =v/Rcosa=2.3 rad/s, 60° (b) p= (v/R)>tana=
=2.3 rad/s2.

1.58. @ =wo V 1+ (Bot/0g)2=0.6 rad/s, B=poV 1+ 0it2=
=0.2 rad/s2.
1.59. Am = 2muwi(g + w).

zZh w,

Fig. 3.

— mo—k (my+-m,) (k) m,
1.60. w= mo—+-my+4-mg g T_m0+m1+m2m2g'
161, (a) F= ikl mumagoosa =ty o kamatkgmy
? min m]—{-m, .

my~+my

1.62. k£ = [(n* — 1)/(n* + 1)] tan @ = 0.16.

1.63. (a) my/m;>sin a + k cos a; (b) my/m, <<sin a — k cos a;
(¢) sin @ — k cos @ <<m,/m; <<sin a + k cos o.

1.64. w, =g (n —sina — kcos a)/(n + 1) = 0.05 g.

1.65. When ¢ < ¢y, the accelerations w, = w, = at/(m; + m,);
when &> ¢ w, = kgmy/m;, w, = (at — km,g)/m,. Here ty =
= kgm, (m; + m,)/am. See Fig. 4.

1.66. tan 2a = —1/k, a = 49° t,;m = 1.0 s.

1.67. tanf=4k; T, =mg(sina+kcosa)/ )/ 1+ k2.

__mgicosa | __m?3cosa
1.68. () v=r3mrgs B s=grgma

1.69. v =1V (2¢/3a) sina.
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1.70. ©=V21/(3w+ kg).
{my— mg) g+ 2myw, . —
L v e M= T @
(b) F=2mime g )
1.72. w=2g (2n—sina)/(4n-+1).
_ 4dmymg+mg (my — my)
1.73. O dmymg =+ mg (my 4 my) g
1.74. Fy, = 2lmM/(M — m) 2.

1.75. t=V2(h+0/3g 2—n)=1.4 s.
1.76. H = 6kn /(n + 4) = 0.6 m.

|
|
!
a 7] z

Fig. 4. Fig. 5.

1.77. w, = g/(1 + neot? @), wy = g/(tan o -+ n cot a).
1.78. w = gV 2/(2+k+ M/m).

1.79. wpin = g (1 — k)/(1 + k).

1.80. wnox = g (1 + k cot a)/(cot @ — k).

1.81. w = g sin a cos a/(sin’a + m,/m,).

. mg sina
1.82. w= M+2m (1—cosa) °

1.83. (a) (P)=2V 2 mv®/aR; (b) (F)|=mw:.

1.84. 2.1, 0.7 and 1.5 kN.

1.85. (a) w=g V' 1+ 3cos?0, T =3mgcosh;
(b) T=mgV3; (c) cos®=1/)3, 0=547°

1.86. ~ 53°.

1.87. O=arccos (2/3) ~ 48°, v=1V 2gR/3.

1.88. ¢ = 1/(x/mw?® — 1). Is independent of the rotation di-
rection.

1.89. r=R/2, Upax=1/,V kgR.

1.90. s = 14,RV (kg/w)?*—1=60 m.

1.9. v << a Vkgla.

1.92. T = (cot 8 + w?R/g) mg/2x.

1.93. (a) Let us examine a small element of the thread in contact
with the pulley (Fig. 5). Since the element is weightless, dT =
= dF;; = k dF, and dF, = T da. Hence, dT/T = k da. Integrat-
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ing this equation, we obtain k = (Inn,)/nt; (b) w=g(n—ng)/(m + M)

1.94. F = (mv}/R) cos® a.

1.95. F= —mw?r, where r is the radius vector of the particle
relative to the origin of coordinates:
F=mw?} 22+ y2

1.96. (a) Ap = mgt; (b) |Ap | =
= —2m(v,g)/g.

1.97. (@) p=at¥6; (b) s=
=at*/12m.

1.98. s = (0t — sin wi) F,/mae?,
see Fig. 6.

1.99. ¢ = n/w; s = 2F J/mo?
VUmax = Fo/mo.

1.100. (a) v=ypge-trim ¢ - oo;

—1
=" (¢) W=y, ———:]llnn,

r
_ _h—y)
1.101. t—m.

1.102, s = % tan o, VUpmgx = l/% sinatana ,

Instruction. To reduce the equation to the form which is convenient
to integrate, the acceleration must be represented as dv/di and then
a change of variables made according to the formula dt = dz/v.

1.103. s = Y5 a (t — 1,)/m, where t, = kmg/a is the moment
of time at which the motion starts. At ¢ < ¢, the distance is s = 0.

1.104. V' =vy/V 1+ kv’/mg.

1.105. (a) v = (2F/mw) | sin (0t/2)|; (b) As=8Fimw? () =
= 4F/amao.

1.106. v = vy/(1 + cos ¢). Instruction. Here w, = —w,, and
therefore v = —v, + const. From the initial condition it follows
that const = v,. Besides, v, = v cos @.

1.107. w = [1 — cos (I/R)] Rgl/l.

———— 2

1.108. (a) v=1"2gR/3; (b) cos%:ﬁ_}&%’)_ﬁ’ where n=
=wy/g, 8, = 17°.

1.109. For n <1, including negative values.

1.110. When R > g, there are two steady equilibrium posi-
tions: 6; = 0 and 0, = arccos (g/w?R). When o?R < g, there is
only one equilibrium position: 8; = 0. As long as there is only one
lower equilibrium position, it is steady. Whenever the second equi-

librium position appears (which is permanently steady) the lower
one becomes unsteady.

1411, h =~ (ws?/v) sin ¢ =7 cm, where © is the angular veloc-
ity of the Earth’s rotation.

1112, F=m}V g2+ o*r? + (W'@)2=8 N.
1413, Feor = 2mo?r V1 + (volor)?=2.8 N.




1.114. (a) w'=w?R:_(b) Fi,=mo?rV QRIr)2—1.

11.115. Fy=mo2RYV 5/9=8 N, Fr=2%mo*RY 5+8g/3w2R=
=17 N.

1.116. (a) F = 2mvo sin ¢ = 3.8 kN, on the right rail; (b)
along the parallel from the east to the west with the velocity v =
=—;— oR cos ¢ &~ 420 km per hour. Here @ is the angular rotation
velocity of the Earth about its axis, R is its radius.

1.117. Will deviate to the east by the distance z=x

2 . .
~ gz oh) 2n/g=24 cm. Here o is the angular velocity of the

Earth’s rotation about its axis.

1.118. A =F(r, — r,) = —17 J.
1.119. 4 = ma*t?/8.
1.420. F= 2as V' 1 + (s/R)2.
1121, A = mg (b + kl).
1.422. A = —kmgl/1 — kcot a) = —0.05 J
11423, Fpun = (my + my/2) kg.
1.124. A = —(1 — n) yngl/2 = —1.3 7.
1.425. (P) = 0, P = mg (gt — v, sin a).
1.126. P = mRat, (P) = mRat/2.
1.127. (a) (P) = —kmgvy/2 = —2W; (b) Ppyx = —om?V ag.
1.128. 4 = Yyma? (r* — 1?) = %) Pma i
= 0.20 J. o
1429, A = Yok(ADR, \/r @)
where k& = kik,/(k; + k,). Y
1.130. A = 3mglba, AU = Utr) N
= mg/2a. N - »
1.1431. (a) r, = 2a/b, steady; g N/ S -
(b) Fpox = b3/27a%, see Fig. 7. I
1.132. (a) No; (b) ellipses !
whose ratio of semiaxes is a/b=

=V P/a; also ellipses, but with Fig. 7.

alb=p/a.
1.433. The latter field is potential.
1434, s = v}/2g (sin @ + k cos @), A = —mv2k/2(k + tan a).
1.435. b = H/2; sp,,, = H.

1.136. v = 2/3)/ gh/3.
1.137. vy =V 5g1; T =3mg.
1.138. t=1%/2yp,R.
1.139. Al= (1 4+ V 1+ 2kl/mg) mg/k.
1.140. v=V 19g1,/32 =1.7 m/s.

__ kmgly {—cos 0 .
1.441. 4= 2  (sin@-}-kcos 6) cos B =0.09 J'.
1442, 4 = =82n (1 + 1)/2(1 — 7)?, where 1 = moe?/x.
1-143- Wc = g (ml —_— m2)2/(m1 + m2)2-
1.145. r = (g/0?) tan 0 = 0.8 ¢cm, T = mg/cos® = 5 N.

1.146. (a) F;, =mg[sina + (w2l/g)ccsa]=6 N.
<Vg(k—tana)/l(1 + ktanoa)=2 rad/s.

1.147. (a) V = (myvy + myvy)/(my + my); (b) T = p (v, —
—V,)*/2, where W = mym, (m, + m,).

1.148. E = E + mV??2.

1.149. F = p (v} -+ v})/2, where p = mym,/(m; + m,).

1.150. p = p, + mgt, where p, = mv, + MaVy, M = my + My;
Tc = Vot + gt?/2, where v, = (myv, + myv,)/(my + my).

1.151. ve = 2V wm,/(m; + m,).

1.152. (a) lpox = Iy + Flx, (d) lpgx = ly +
+ 2myF/n (my + my), lpin = L,

1.453. (a) Al > 3mg/x; (b) b = (1 + xAl/mg)2 mg/8x = 8mg/x.

1.454. v = —mv/(M — m), v, = Mv/(M — m).

1.155. Vrear‘—_-vo—ﬁ—l'%nu; Vjorm=V0+‘(—A% u.

b o<

lmin = lo;

2 2M4-3
1:156. (1) v, = —ﬁﬂm @) vo=— (M’I;—(m) (;Igm) W
Vo/vg=1+m/2(M + m) > 1.
1.158. Ap=mV Zgk (n+1)/(n—1)=0.2 kg-m/s.
1459, () 1= —5 215 (b) F=_Tm%%,

1.160. 1 = ml’/2M.

1.161. t=(pcosa— M |/ 2glsina)/Mgsina.

1.162. (a) v=(2M/m) V gl sin(8/2); (b) nx~1—m/M.
1.163. b = Mw2/2g (M + m).

1.164. (1) A = —pgh, where p = mM/(m + M); (2) Yes.
1.166. v = 1.0i + 2.0§ — 4.0k, v = 4.6 m/s.

1.167. AT = —p (v; — v,)?/2, where p = mym,/(m; + m,).
1.168. (a) m = 2m,/(m, + m,); (b) 1 = dmym,/(m; + m,)2.
1.169. (a) my/m, = 1/3; (b) my/m, = 1 4+ 2 cos © = 2.0.
1.170. v = t/,c08? a = 0.25.

11471, vpoe=v (1 + V2 (M—1)) =1.0 km per second.

1.172. Will continue moving in the same direction, although
this time with the velocity v'=(1— )1 — 2q)v/2. For n<1 the
velocity v’ &~ mw/2=175 cm/s.

1.173. AT/T = (1 + m/M) tan? 0 + m/M — 1 = —40%.

1.174. () p=pVv?+v: (b) T=1,p 24v?). Here p=
= mym,/(my+ m,).

1.175. sin 0,4, = my/m,.

1.176. v/ = —v (2 — n?)/(6 — n?). Respectively at smaller m,
equal, or greater than }/ 2.

1.178. Suppose that at a certain moment ¢ the rocket has the
mass m and the velocity v relative to the reference frame employed.
Consider the inertial reference frame moving with the same velocity
as the rocket has at a given moment. In this reference frame the
momentum increment that the system “rocket-ejected portion of gas”
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acquires during the time dt is equal to dp = m dv + p dt-u = F dt.
What follows is evident.
1.179. v = —u In (m,/m).
1.180. m = mpe-vi/,
1.481. a = (u/vy) In (my/m).
1182, v=Tin_M_ o ,
1% my— Ut my— ut
1.183. v = Ft/my(1 + pt/mg), w = Flmy(1 + ut/mg)2.
1.184. v=V 2gh1n (I/h).
1.185. N=2b} a/b.
1.186. M = 1/,mgv,t? cos a;
= 37 kg-m?/s.
1.187. (a) Relative to all points of the straight line drawn at
right angles to the wall through the point O;
(b) | AM | = 2 mvl cos c.
1.188. Relative to the centre of the circle.
| AM | =2V 1T —(g/o?l)2 mgl/o.
1.189. | AM | = AmV.
1.190. M = movi®.
1.191. m = 2kr2/v2.

1.192. v, =1 2gl/cos 6.

1.493. F = mo?ri/re.

1.194. M, = Rmgt.

1.195. M = Rmgt sin a. Will not change.

1.196. M’ = M — {r,pl. In the case when p = 0, i.e. in the
frame of the centre of inertia.

1.198. M = 1/; lmy,.

1.199. e,,, &~ mvi/«xl%. The problem is easier to solve in the
frame of the centre of inertia.

1.200. T = 2nyM/® = 225 days.

1.201. (a) 5.2 times; (b) 13 km/s, 2.2:10- m/s2.

1.202. T = n)/(r + R)*/2yM. It is sufficient to consider the
motion along the circle whose radius is equal to the major semi-axis
of the given ellipse, i.e. (r + R)/2, since in accordance with Kepler's
laws the period of revolution is the same.

1.203. Falling of the body on the Sun can be considered as the
motion along a very elongated (in the limit, degenerated) ellipse
whose major semi-axis is practically equal to the radius R of the
Earth’s orbit. Then from Kepler’s laws, (2¢/T)? = [(R/2)/R,
where 7 is the falling time (the time needed to complete half a revo-
lution along the elongated ellipse), T is the period of the Earth’s
revolution around the Sun. Hence, © = T/4)/2 = 65 days.

1.204. Will not change.

1.205. 1= yM (T/2mn)2.
1.206. (a) U = —ymm,/r;
F=ymM/a(a+1).

M = (mvl/2g) sin® a cos o =

(by U= —y(mM/l)In(1+ la);

|

1.207. M =mV 2ymgr,ry/(ry+r;), where mg is the mass of
the Sun.

1.208. E = T 4 U = —ymmg/2a, where mg is the mass of
the Sun.

1.209. rp,= 2211 [1 £V 1T=(@ = n)nsinzal,

=roi/ymg, mg being the mass of the Sun.

1.210. rpip= (yms/v?) [V 1+ (W2/ymg)? — 11, where mg is the
mass of the Sun.

1.211. (a) First let us consider a thin spherical layer of radius p
and mass 8 M. The energy of interaction of the particle with an ele-
mentary belt 8S of that layer is equal to (Fig. 8)

dU = —v (m8M/2l) sin 8 d. (*)

According to the cosine theorem in the triangle OAP I* = p? 4
+ r® — 2pr cos 8, Having determined the differential of this expres-
sion, we can reduce Eq. (*) to the form that is convenient for integ-
ration. After integrating over the whole layer we obtain 8U =
= —ym 8M/r. And finally, integrating over all layers of the sphere,
we obtain U = —ymM/r; (b) F, = —aU/dr = —ymM/r®.

where =

drm,~dS,

A4

d/772 ~dSy

Fig. 8.

Fig. 9

1.212. First let us consider a thin spherical layer of substance
(Fig. 9). Construct a cone with a small angle of taper and the vertex
at the point A. The ratio of the areas cut out by the cone in the layer
is dS; : dS, =r? : rl. The masses of the cut volumes are proportion-
al to their areas. Therefore these volumes will attract the particle A
with forces equal in magnitude and opposite in direction. What
follows is obvious.

1.213. A = —3/,ymMI/R.

—(yM/R3 for r<{RA,
1.214, G:{ (eMITE) € N
—(yM/r)r for r>=R;
—3/,(1—r2/3R%)yM/R for r<R,
?= —yM/r for r>=R. See Fig. 10.

1.215. G = —*%gnypl. The field inside the cavity is uniform.
1.216. p = 3/3 (1 — r¥/ R)yM?*/nR*. About 1.8-10° atmospheres.
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1.217. (a) Let us subdivide the spherical layer into small ele-
ments, each of mass &m. In this case the energy of interaction of
each element with all others is 8U = —ym 6m/R. Summing over all

Fig. 10.
elements and taking into account that each pair of interacting ele-
ments appears twice in the result, we obtain U = —vm?/2R;
(b) U = —3ym?/5R.

3/2 4.5 days (6=0),

1.218. At~ _EE__——L’——={ ys 0=0)

V vM 3Ari2r+-8 0.84 hour (§=2).

1.219. w; : w, : wg = 1 : 0.0034 : 0.0006.

1.220. 32 km; 2650 km.

1.221. b = R/(2gR/v: — 1).

1.222. b = R (gRIW® — 1).

1.223. r= Y yM (T/2w)? = 4.2-10* km, where M and T are the
mass of the Earth and its period of revolution about its own

axis respectively; 3.1 km/s, 0.22 m/s
1.224. M = (4n*R3/yT? (1 + T/1)* = 6-10* kg, where T is
the period of revolution of the Earth about its own axis.

/__ZIIR W_ I_M—_ 2nR
1.25. v = 2R 1/ 7.0 s, w' =Yg (1457

X ‘/Y_RAT) — 4.9 m/s2. Here M is the mass of the Earth, T is its

period of revolution about its own axis.

1.226. 1.27 times.
1.227. The decrease in the total energy E of the satellite over the

time interval dt is equal to —dE = Fuv dt. Representing E and v as
functions of the distance r between the satellite and the centre of the
Moon, we can reduce this equation to the form chlvenient for integ-
ration. Finally, we get v &~ (V' — 1) m/aV/ gR

1.228. v, = 1.67 km/s, v, = 2.37 km/s.

1.229. Av=VYM/R(1—V2)= —0.70 km/s, where M and R
are the mass and the radius of the Moon.

1.230. Av=V gR (V2—1)=3.27 km/s, where g is the stan-
dard free-fall acceleration, R is the radius of the Earth.

1.231. r=nR/(1+V 1) =3.8-10* km.
290

1.232. A ~ ym (My/Ry + M,/R,) = 1.3+10° kJ, wh
R are the mass and the radins of the Earth and the Moun - 1 224

1.233. vy~ V22 + (VY2 — 12 V2 ~ 17 km/s
~ . H 2 =
I;/_’ Y—MEjlilR/, Mg and R are the mass and the radius of :ﬁi EZ;‘th;
E;ra],z o?bri’t.MS is the mass of the Sun, r is the radius of the
iggé ! = 2aFy/mw = 1.0 m.
.235. N=(aB—0bA)k, where k is the unit t
axis; l=|aB—bA |/} 4>+ B2, H veetor of the 2
1.236. I=|aA—bB|/V 424 B2.
1.237. F,,, = 2F. This force is parallel to the di
is applied at the midpoint of the siI()ie BC. © the diagonal AC and
1%38 éa; } = 1//3ml2; (b) I = 1/gm (a® 4+ b?).
.239. (a) I =1/, npbR* = 2.8 gem?; =3
1280, T = YmBe. gom’s (0) 1= "/ mE.
1.241. I = (37/72) mR? = 0.15 kgem?
1.242. T = 2/, m})zz. s
1.243. (a) o = gt/R (1 + M/2m); (b) T = mg?t2
T TR s gmr"*/I.) (b) mgt?2(1 + M/2m).
1.245. @ =}/ 6F sin @/ml.
1.246. p— Img—m, |g I _ my (m4-dmy)
(mi+mg+ m/2)R’ Ty~ my(m—+4my)°
1.247. A— — il tme s
m+2(my+mg)
1.248. n = (1 + k%) o R/8xtk (k + 1) g.
1.249. t = 3/, wR/kg.
1.250. (@) = Y/30,.
1.251. B = 2mgz/RI (M + 2m).
%355,?% ga)) kT>/ 2{} tan a; (b) T = 5/,, mg%? sin? a.
.253. (a = mg = 13 N, =2 = 5 H
(h)i 2_5__4 it ¢ mg B /s g/R = 5+10% rad/s%
254, W =2/3(g —w,), F=1Y;m (g — w,).
1.255. w = g sin a/(1 4 Iimr®) = L
1.256. F o = 3kmgl(2 — 3k); Wpae = 2kg/(2 — 3k).
R Ok
1.258. T = 1/10 mg. k M(i_i-?)
1.259. w = 3g (M + 3m)/(M + 9m + I/R?).
1.260. (a) w=____..1:n(3(’””:'*_;_2”‘2)); (b) T=—__._F;t2(3”‘1+2”“-’)
m L]
1.261. wy = Fl(ms o 5omg)s wy = 2y o™
1.262. (a) t = 1/, w,R/kg;, (b) A = —1/smwiR2.
1.263. w=1'10g (R +r)/17r2.
1.264. v, =V 1/sgR (7 cos & — 4) =1.0 m/s.
1.265. v,=1/'8¢R.
1.266. T = mo?.
1-267. T = 7/10 mv? (1 + 2/77'2/32).
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1.269. N = Y/,,me?!® sin 20
1.270. cos 8 = 3/, g/w?l.
1.271. Az = 1, ka.

1.272. v’ = 0 /Y1 F 3m/M.
1.273. F=9%/,02/ml=9 N.

+__3m—4M — 8Mut
1.274. (a) v = mram v’ (b) F= T(A1+4MBm)s

1.275. (a) v=(M/m)V %l sin (a/2);
(b) Ap =M V' V/gglsin (a/2); (c) z = 2/l
1.276. (a) 0 = (1 4 2m/M) w,; (b) A = /,m2R? (1 + 2m/M).

. 2m1 ', — mmzR dv’
AT @) 0=~ g, O 0 No= — gl B T
1.278. (a) m=—1‘}’;_;t1_2‘°2_; (b) A= -—211141)((0,-—0)2)2.
1 2

2

1.279. v' = v (4 —n0)/(4 + 1), © =120/l (4 + 7). For n=4
and n > 4.

1-280- (a) A90° = ‘/213(03/([ -+ Io), A180° = 2[:@:/[; (b) N =
= TP/l + I,).

1.281. 0=V 2g/T=6.0 rad/s; F=mgl,/1=25 N. '

1.282. (a) M =Y/, mwl*sin®, M,= Msin®. (b) | AM | =
= 1/,mol? sin 20; (c) N = {/pmaltx
X sin 20.

1.283. (a) o’ = mgl/Io = 0.7 rad/s;
(b) F = mw"?l sin 8 = 10 mN. See Fig. 11.

1.284. o = (g + w) l/nnR? = 3%
% 102 rad/s.

1.285. o =mnllVg+rwle =
=0.8 rad/s. The vector ® forms the
angle 6 =arctan (w/g) = 6° with the ver-
tical.

1.286. F' =2/ mR*0w’/l=10.30 kN.

1.287. Fpox = umrio/lT=0.09 kN. Fig. 11.

1.288. N = 2nn/v/R = 6 kN.m.

1.289. F,4y = 2nnlv/Rl = 1.4 kN. The force exerted on the
outside rail increases by this value while that exerted on the inside
one decreases by the same value. :

1.290. p = aEAT = 2.2.10% atm, where a is the thermal expan-
sion coefficient.

1.21. (a) p = o, Ar/r = 20 atm; (b) p =~ 20, Ar/fr = 40 atm.
Here o, is the glass strength.

1.292. n=120,/p/nl=0.8.102 rps, where 0, is the tensile
strength, and p is the density of copper.

1.293. n=V0,/p/2nR =23 rps, where 0, is the tensile
strength, and p is the density of lead.

1.294. z ~ 1,/ mg/2n ?E = 2.5 cm
1.295. & = Y/,F,/ES.
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1.296. T = Yyme?l (1 — r?/I?), Al = 1/; pw?l}/E, where p is
the density of copper.

1.297. AV'= (1 — 2p) FI/E = 1.6 mm® where p is Poisson’s
ratio for copper.

1.298. (a) Al = 1/, pgl?/E; (b) AV/V = (1 — 2p) Al/l, where p
is the density, and p is Poisson’s ratio for copper.

1.299. (a) AV/IV = —3 (1 — 2p) p/E; (b) p =3 (1 — 2pn)/E.

1.300. R = 1/; Eh?/pgl® = 0.12 km, where p is the density of
steel.

1.301. (a) Here N is independent of z and equal to N,. Integrat-
ing twice the initial equation with regard to the boundary condi-
tions dy/dz (0) = 0 and y (0) = 0, we obtain y = (N /2EI) z®. This
is the equation of a parabola. The bending deflection is A =
= N ?/2EI, where I = a*/12.

(b) In thiscase N (x) = F (I — z) and y = (F/2EI) (I — z/3) 2%;
A = FP/3EI, where I is of the same magnitude as in (a).

1.302. A = FI3/48EL.

1.303. (a) A = 3/, pgl*/ER?, (b) A = 5/, pgl*/ER®. Here p is the
density of steel.

1.304. A = 9/,8pl%/ Eh?, where p is the density of steel.

1.305. (a) ¢ = ({/2nr® ArG)-N; (b) ¢ = (2l/nr'G)-N.

1.306. N = & (d; — d}) Gg/32] = 0.5 kN-.m.

1.307. P = ¥/, ar'Goo = 17 kW.

1.308. N = 1/, Bm (ry — r)/(r} — r?).

1.309. U = t/;mEe?/p = 0.04 kI, where p is the density of steel.

1.310. (a) U = 1/,nr2Pp2g?/E; (b) U = 2/, nr2lE (Al/lj2. Here p
is the density of steel.

1.311. A =~ /g nh8%E/l = 0.08 KJ.

1.312. U =1/, ar'Ge?/l =7 7.

1.313. u = 1/, Go*r¥/ 2.

1.314. u = 1,8 (pgh)® = 23.5 kI/m3, where B is the compressi-
bility.

1.315. p; > p,, v; <v,. The density of streamlines grows on
transition from point 7 to point 2.

1.316. Q=8,5,V 2gAR/(S: — 5?).

1.317. Q= SV 2gAhp,/p.

1.318. v=V2g (h{ -+ hop,/p;) =3 m/s, where p, and p, are the
densities of water and kerosene.

1.319. A = 25 cem; 1,,,, = 50 cm.

1.320. h = 1/, v¥g — hy = 20 cm.

1.321. p = p, + pgh (1 — R:/r?), where R, <<r < R,, p, is the
atmospheric pressure.

1.322. A = 1/,pV3/s%?, where p is the density of water.

1.323. t=) 2hlg S/s.

1.324. v=0h V 2I/A—1.

1.326. F = 2pgS AR = 0.50 N.

1.327. F = pgbl 2h — ) = 5 N.
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1.328. N = plQ%nr* = 0.7 Nem.

1.329. F = pgh (S —s)?)/S =6 N

1.330. (a) The paraboloid of revolution: z = (©?%/2g) r?, where z
is the height measured from the surface of the liquid along the axis
of the vessel, r is the distance from the rotation axis; (b) p = p, +
+ 1/2()(027‘2.

1.331. P = nne’RYh =9 W.

. In (r/Ry)
1.332. v=y, (AR 2

1
1399 0= ougflly ()5 0 2= 8

1.334. (a) Q =1, nw,R% (b) T = YgnlR%0};, (¢) Fyp =
= 4nanlvy; (d) Ap = li'qluz/Rz. ’ ’ o
1.335. The additional head Ak = 5 cm at the left-hand end of
the tube imparts kinetic energy to the liquid flowing into the tube.
From the condition pv?/2 = pgAh we get v = V 2g Ak = 1.0 m/s.
1.336. ewa=z = 5,

1.337. v,=v, ;:-g:—::-:=5 pm/s.

$/ 18Rent
1.. . — -—-————!‘—— — -
- 338. d &=rrT 5 mm, where p, and p are the den
sities of glycerin and lead.

1.339. t= —%lnn=0.20 s.

1.340. v=c}V n(2—n)=0.1c, where ¢ is the velocity of
light.

1.341. (a) P=a(1+V4—=3p2); (b) P=a(V1—P+Vi—p?.
Here p="V/e.

1.342. l,=1 YV T —p? SinZ0)/(T— %) =1.08 m, where p=u/c.

' tan ' o, —

1.343. (a) tan © = Vi Hence ©'=59° (b) S

=8,V 1 —Pp2cos?0=3.3 m% Here p=uv/c.

130, v=c)/ (2—3) 2 _0.6.10 wss.

1.345. ly=cAt' V1I—(At/At)2 =4.5 m,
1.346. s=cAtV 1 — (Aty/At)2=5 m.
1.347. (a) Aty=(l/v) V1 —(vlc)t=1.4 ps;
) =1V 1—@l):=0.42 kmn.
1.348. 1, =vAl/Y 1— (W/e)? =17 m.
1.349. l,=V Az, Az,=6.0 m, v=c )1 —Az,/Az,=2.2-108 m/s.

2l5/At
1.350. v= T‘iTlooW .

1.351. The forward particle decayed At = If/c (1 — §%) = 20 ps
later, where B = v/c.
1.352. _____IA_IB—v(tA —tg) .
5 (a) lO V1___—(D/C)2 y

254

(b) by —tg=(1 — VI—=(@lc)?) ly/v or tg—ta=1+V T— Wic)?) L/v.
1.353. (a) t(B)=lo/v, t(B')=(/v)V1—(lc)% (b) t(4)=
= (L) VI=[Wlc)2, t(4')=ly/.
1.354. See Fig. 12 showing the positions of hands “in terms of K
clocks”.

4 — )
DD P-B-D-BD

Fig. 12.

1.355. z=(1—1 T — B?) ¢/B, where p="V/e.

1.356. It should be shown first that if Az = ¢, — #; > 0, then
At =t —t; > 0.

1.357. (a) 13 ns; (b) 4.0 m. Instruction. Employ the invariance
of the interval.

o V)ef-02 (1 — Vo/ct
1358, v = YO DAL TR
—vxV/c2

1.359. (a) v = vy + v, = 1.25¢; (b) v = (v; + v,)/(1 + V1w,/c?) =
= 0.91c.

1.360. I = I, (1 — B®/(1 + P?), where p = v/c.

1.361. v=V 0>+ v2—(v,vy/c?).

1.362. s=At )/ b, Where p=V/e.

—B2 gj
1.363. tan @' =Lciﬂﬁ:;';:—e, where p="V/e.

1.364. tan0=v'V/c2)/ 1= (V/c).

1.365. (a) w' = w (1 — P**/(1 — Bu/c)®; (b) w' = w (1 — B).
Here f = Vl/e.

1.366. Let us make use of the relation between the acceleration
w' and the acceleration w in the reference frame fixed to the Earth:

32 v

w'= (1 —v¥e?) """ —.

This formula is given in the solution of the foregoing problem
(item (d)) where it is necessary to assume V = v. Integrating the
given equation (for w’ = const), we obtain v = wtlY 1 + (Wil
The sought distance is I = ()1 + @'t/c)? — 1) c*/w’ = 0.91 light-
year; (¢ — v)/lc = 1/2 (c/w't)* = 0.47%.
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1.367. Taking into account that v=uw't/) 1+ Ww't/c)?, we get

TO_SW%&W: ¢ 1n["”-{—‘/1+ wr) ] 3.5 months.

1. 368 m/my ~ 1/V 21 —B) =~ 70, where p=uv/c.

1.369. v = ¢}/ n (2 —{—_1])/(1 + 1) = 0.6¢, where ¢ is the velocity
of light. The definition of density as the ratio of the rest mass of a
body to its volume is employed here.

1.370. (¢ — v)fe =1 — [1 + (me/p)?11? = 0.44%.

1.371. v=(cMVP—1 = Y V3.

1.372. A = 0.42 m,c? instead of 0.14 myc2.

1.373. v = Y,c}/3 = 2.6-108 m/s.

1.374. For & <« 1 the ratio is T/myc?® < 4/5 ¢ &~ 0.013.

1.375. p=V T (T + 2myc?)/c=1.09 GeV/c, where c is the velo-
city of light.

1.376. F=(I/ec) V' T (T +2myc?), P=TI/e.

1.377. p=2nmv?/(1 —v?/c2).

1.378. v= Fct/l/m c2 |- F2t2,

1.379. F = myc¥a.

1.380. (a) In two cases: Fijvand F L v; (b) F, =myw Vi—pe,
Fj=m,w/(1 —ﬁz 32 where B=uv/c-

1.382. ¢ —=¢ |/ (1 —B)/(1 +B), where B="V/c, V=">3/c.

1.383. E2 — p c2 = m c4, where m, is the rest mass of thepar-
ticle.

1.384. (a) T =2myc? (V1 L T/2mec®—1) =777 MeV,
7=V 1ymel —940 MeV/c; (b) V=cV/ T/(T + 2myc?) =2.12-108 m/s.

1.385. My=V 2my (T +2myc?)/c, V=cV T/(T + 2myc?).

1.386. T’ =2T (T+2mocz)/m0c2=1.43 -103 GeV.

1.387. E{ og = 0L ‘”‘=+ m9)? 2 The particle m, has the

highest energy when the energy of the system of the remaining
two particles m, and mg is the lowest, i.e. when they move as
a single whole.

1.388. v/c__ oyTaTe
mjm
(as in solving Problem 1.178) and the relativistic formula for
velocity transformation.

2.4. m = pV Ap/pe=
ic pressure.

2.2. p =1y (01 T7,/T, — Ap) = 0.10 atm.

2.3. my/my = (1 — a/My)/(a/M, — 1) = 0.50, where a =
= mRT/pV.

2.4. p=

1=V (m,e2/F)* - c2t2 — myc?/F.

mim, ‘ .
— (mimg)** Use the momentum conservation law

30 g, where p, is the standard atmospher-

Do (my +mg)

RT (my /M, 1 mgl M) =1.5 g/l.
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2.5. (@) p= (v; + v2+x)RT/V—20 atm; (b) M =
= (viMy + v,M, + viM)/(v; + v, + vg) = 36.7 g/mol.

2.6. T = Ty (m — 1)/ (n'2 — 1) = 0.42 kK.
27 p—-__lnmn___

In (1 AV/Y)
2.8. D = pge-Civ,

2.9. t = (V/C)In q = 1.0 min.
2.10. AT = (mg + p, AS) /R = 0.9 K.

2 11 (a) Tmax— /3 pO/B) Vp0/3a (b) Tma:c Po/eﬁB

2.12. pouin = 2RV oT,,.

2.13. dT/dh = —Mg/R = —33 mK/m.

2.14. dT/dh = —Mg (n — 1)/nR.

2.45. 0.5 and 2 atm.

2.46. (3) b = RT/Mg = 8.0 km; (b) h ~ nRT/Mg = 0.08 km.

247. m = (1 — e-Mgh/RT) PoS/g.

2.18. he— 5 ho dh S pdh=RT/Mg.

0

2149. Q)p = p, 1 — ah)" h <1/a; (b) p = py/(1 + ah)". Here
n = Mg/aB

2.20. p eMo2r2/2RT

2.24. Pzd—pHT/M 280 atm; p = pRT/(M — pb) — ap®/M?=
= 80 atm.
2.22. (a) T=a(V—b)(1

IRV (nV + b) = 133 K; (b
RTI(V — b) — a/V? = FaVEY (O +8) ®)

atm.

2.23. a = V2 (T1p2 — szl)/(T — T4) = 185 atm-1*/mol?, b =
2.24. R = V2 (V — 17)2/[RTV3 — 2a (V — b)2]
2.25. T > a/bR.
2.26. U—-pV/( — 1) =10 M1J.
2.27. A 1/,Mv® (y — 1)/R.
2.28. T—Tsz (P1V1+P2 Val(o1ViTy + p,VoTh); p =
= (piVyi 4+ pVo)/(Vy + V
2.29. AU = —pOVAT/TO (y —1) = —0.25kJ, Q' = —AU.
2.30. Q Ay — 1) =71
2.31. = RAT = 0.60 kJ AU = @ — RAT = 1.00 kI,

v—Q/(Q RAT) = 1.6.
32. Q = vRT, (1 — 1/n) = 2.5 kJ.

V1¥1 (Y2 —1) -+ ¥ (v1—1)
2'33 N AT =1.33.
2.34. ¢y = 0.42" 1 I(g- K) cp = 0.65 J/(g-K).
2.35. A = RT (n — 1 — 1n n).
2.36. A’ = p,V, In [(n + 1)%/4n).
237. vy =1+ (n — 1)/(Q/vRT0 — Inn)=1.4.
2.38. See Fig. 13 where V is an isochore, p is an isobaric line, T

is an isothermal line, and S is an adiabatic line.
2.39. (a) T = Ton¥-D/ = 0.56 kK; (b) A’ = RTy(n- D —
— 1)/(y — 1) = 5.6 kJ
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2.40. The work in the adiabatic process is n = (n¥-' —
—1)/(7 — 1) In v = 1.4 times greater.
2. T = To [(n + 1)¥anlv-1/2,

2.42. v=V2%RT/(y — 1) M = 3.3 km/s.

2.43. Q = RAT (2 — v)/(y — 1).

245. C, =R (n—y)(n—1)(y —1); Ch <0 for 1 <n <<y.

2.46. C = R(n—9y)/(n — 1) (y — 1) = —4.2 J/(K-mol), where
n= 1n f/ln a.

2.47. (a) 0 = R(n—y)AT/(n—i)(v——i)—OM kI; (b)
A = —RAT/(n — 1) =0.43 k

Fig. 13.

2.48. (a) AU = aVi(m? —1)/(y —1); (b) A = 1/,aV? (n* — 1);
(©) € = TR (y + 1)/(y — 1).

2.49. (a) C = —R/(y —1); (b) TVv&w-1/2 =const; (c) A =
— 2RT, (1 — n-v2)/@3 — 1).

2.50. (a) A = (1 — 2 RAT; ) € =Rty —1) + R — a)
C <0 for a > y/(y —

2.51. (a) 4 = AU(’y—l)/a Q=AU+ (y —1)/al; (b)) C =
= R/(y — 1) + R/a.

2,52, (a) C = Cy + RlaV; (b) C = Cy + R/(1 + aV).

2.53. (a) C = yRI(y — 1) + aR/p,V; (b)) AU =p, (V, —
—V)/(y —1); A =po (Vo — V1) +aln (Vy/Vi); Q@ =1vp, (Vo —
—V)(y — 1) + a ln (V/ V). |

(b) Q = aCy (Vy — V) +

2.54. (a) C = Cp + RTy/aV;
-+ RT, 1n (V,/V,).
2.55. (a) Ve-oT/R = const; (b) TeRMV = const; (c) V — aT =

= const.
2.56. (8) A = a ln 1 — BTy (1— 1)/(y—1); (b) pV¥ e= (v=1/pV —
= const.
2.57. A=RTIn 3 b+ ( —5-), where a and b are Van
2 1

der Waals wnstants
2.58. () AU=a/V,—a/V,=0.11 kI; (b) Q=RTIn ‘;:
—3.8 kI.
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2.59. (a) T (V — b)¥/°v = const;
R
(b) Cp—Cy =1 % DRIV |
vavgq (Y — .
2.60. AT = A AZESANS —3.0 K.
2.61. Q =~ (V, — V)/V,V, = 0.33 Kkl.
2.62. n = p/kT = 1-10° cm-3; {I) = 0.2 mm.
263. p=(1+ 1) mRT/MV = 1.9 atm, where M is the mass
of an N, mole.
2.64. n = (p/kT — p/m,)/(1 — my/m,) = 1.6-10® cm-3, where
m; and m, are the masses of helium and nitrogen molecules.
2.65. p = 2nmv® cos?® = 1.0 atm, where m is the mass of a
nitrogen molecule.
2.66. i = 2/(pv¥p — 1) = 5.
2.67. v/v,g=V (i+2)/3i; (a) 0.75; (b) 0.68.
(3N —3) kT for volume molecules.
2.68. (e)={

(B3N —5/2) kT for linear molecules.
1/2(N —1) and 1/(2N —5/3) respectively.
269. @) Cr =",R, y=09/7; b) Cy = (BN —5/2)R, y =
= (6N — 3)/(6N —5); (c) Cy =3 (N —1)R, y=
= (N —2/g)/(N — 1).
1/(3N —2) for volume molecules,
2.70. A/Q={

1/(3N —3/2) for linear molecules.
For monoatomic molecules A/Q=2/5.
2.7. M = R/(cp, — cv) = 32 g/mol. i = 2/(cpley — 1) = 5.
2.72. (a) i = 2 (Cp/R — 1) = 5; (b)z=2[C/H—+—1/(n—1) =
= 3, where n = 1/2 is the polytropic index.
2.73. y = (5vy 4+ Tvy)/(3vy + 5v,).
2.74. Increases by Ap/p = Mv*/iRT = 2.2%, where i = 3.
2.75. (a) vyq=V 3RT/M =0.47 km/s, (e)=3/,kT =6.0-10"2 J;
(b) v,q~ 3 l/QkT/np d3=0.15 m/s.
2.76. 3 ——'56 times.
2.77. Q =1, (m* — 1) imRT/M = 10 kIJ.
2.78. wsq = V2kT/I = 6.3 - 1012rad/sec.
2.79. (&)t = kTt = 0.7-10-2° J.
2.80. Decreases n¢+9/t times, where i = 5.
2.81. Decreases ni-bii-2 — 9.5 times.
2.82. C =1,R (i +1) = 3R.
2.83. vy, = V 2plp = 0.45 km/s, (v) = 0.51 km/s, v,y =
= 0.55 km/s.
2.84. (a) SN/N = (8/)/ n) e~16v = 1.66%;
(b) SN/N =12V 3/2n e=3/28q = 1.85%.

2.85. = @ _380 K; (b) T=17
B @) T= s s = 380 K (b)
2,86, (a) T—-"0=2D _ 330 K. (b) y— %M,

4k 1n (vgfvy) m n—A1
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my (Av)? 2.112. (a) dN = (2mny/ad/2) e=URT /T dU; (b) U ,,="/5kT.
2.87. T=2k(1—1/m WE =0.37 kK. 2.113. In the latterocase. ?
T T N o 2.114. (a) n=1—n1-v=0.25; (b) n=1—nt-1=0.18.
2.8, v/ FLRE) _q 64 omys, 2415 0 = (0 —o)fn —9.
2.89. T="fmotfk. 217, Nt i et
2.90. dN/N = (52 ) P2e-my2hT 0y ) dv,. 2.118. n = 1 — n~U-1),
2.91. () =0, (| v, )=V 2kT/nm. 2A19. m =1 — (n + 1)/t + 1717 n
2,92, W =kT/m. 2.4120. In both cases n=1— —-
2.93. v=1/,n(v), where (v)="1V 8kT/nm. 2.121. In both cases n—1— 2=
o . * - nlon’
2.94. p= S 2mv,-v.dn (v,) = nkT, where dn (vy) = 2.122. n=1 _"T“‘l_
s ninn
- Yoot
= (m/2nkT) .. e~k 2AT 2428, (a) n=1—y 3 (b) n=1——"——
2.95. (1/v)=V Im/nkT = bav(v). W ) Vin—tnt
2.96. dN/N =2n (nkT)™%/%e~2IT /& de; e,, = Y,kT; 0. 2424, (&) n=1— T —rm
2.97. 8N/N =3V 6n e~3/26n=0.9%. (b) n=1—"—1+(”—f)’ lnn
o yin—
2,98, ANV _ 2 PP _ (=1 Inv
u098- N - (nkm3/2 égVe e e/dee, 2.125- n_ Tlnv+(T—1)/(v—1) .
The principal contribution to the value of the integral is provided 2.126. n= = S_:Tti_)_lil; ;/(Y—i) .
by _Ehe smallest values of ¢, namely € &~ e,. The slowly varying factor VT
V € can be taken from under the radical sign if ascribed the constant 2427, n=1-2 A+ vy’

value }'e,. Then

2.128. The inequality S —TQL—S GTQQ <0 becomes even stronger
1

AN/N = ~to/AT,
/N =2V eo/nkT e~to when T, is replaced by T, and Ty by Tmin. Then Qy/Tpme—

2.99. (a) vpr= V3kT/m; (b) epp=kT. — QT min< 0. Hence
2.100. dv= S dn (dQ/4m)v cos 8 = n (2kT/nm) '/ sin 8 cos 0 d6. 0‘5102 <T”“}‘;:'"'", or N <Mcarnoi- P
a2 ] /2.129. According to the Carnot theorem 2

2.101. dv— dn (d _ 312 o—mv2/2RTy3 gy, A/6Q, = dT/T. Let us find the expressions

v eS_— 0 n (@Q/4n) v cos 0= (m/2mkT)*" e v dv for 84 and 8@;. For an infinitesimal Carnot
2.402. F = (kT/AR) In q = 0.9-10-® N. cycle (e.g. parallelogram 7234 shown in
2.103. N, = (6RT/nd*Apgh) In n ~ 6.4-10%* mol-L, Fig. 14)
2.104. n/no—_—e(Mg—Ml)gh/RT: 1.39. 6A = dp'dV = (ap/aT)VdT'dV,
2.105. h=k_71n_(1‘1/"_1)_ 80, = dUy, + p dV = [(8U/8V)r + pl dV. Fig. 14.
2.106. Will (ﬁ?)? ’glll)ailge. - Itremains to substitute the two latter expressions into the former one.
2.107. (U) = kT. Does not depend. 2.130. (a) AS=R1D"=19 J/(K - mol); (b) AS=YRlnr _
2.108. w ~ nRT/Ml ~ 70 g. o5 ] v—1 v—1

2RTplnn = /(K-mol).
2.109. M= b0 CI—rT ot - 2431. n = eAS/vr = 2.0,
1
2.110. o=V @RT/MP) lnn= 280 rad/s. 2132 AS =vR1Inn = 20 J/K.
2.411. (a) AN = nge~o*r T4z dr; (b) rp, =V kTja: (c) dN/N — 2.133. AS= — W =1 Inn=—10 J/K.
= (a/nkT)%*? e~er¥kT4nr2dr; (d) Will increase n3/2-fold. ‘ 2.134. AS = (yIna — In ) vR/(y — 1) = —11 J/K.
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2.135. S,— ;=R (In a— v‘iﬁ ) =1.0 I/K.

1
(n—vy)R
2.136. AS——————-——(n 7o 1)ln'c.

2.137. AS =-”_%J£1—1>£ Ina=146 J/K.

2.138. V== ypo/a (1 +9).

2.139. T =Ty (Rja) 1n (V/V,).

2.440. AS = R In [(V, — b)/(V, — b)].

2441, AS = Cy In (T,/Ty) + R 1In [(V, — b)/(Vy — b)].

2.142. S = aT%/3.

2443, AS =mla In (T,/T) +b (T, — '
—T)l = 2.0 kI/K. -

2144, C = S/n; C <0 for n <0.

2.445. T = T,eS-5)C  See Fig. 15. T
2.146. (a) C= —a/T; (b) Q=a In (T}/T,);
(YA =aln (TY/T,)+ Cy (Ih—T,). <0
2.1447. @) n=(n —1)/2n; (b) n=(n — 0
—1)/(n + 1).
2.148. AS = vRInn = 20 J/K. Sp §
2.149. AU = (2v-1 — 1) RTJ/(y—1),AS = Fig. 15.
=R ln 2.

2.150. The pressure will be higher after the fast expansion.

2451, AS =v,RIn(1 + n) +v,RIn (1 + 1/n) = 5.1 J/K.

2.152. AS = mqc; In (T/Ty) + mye, In (T/T,) = 4.4 J/K, where
T = (myeryTy + myc,Typ)/ (mycy + mye,), ¢, and c, are the specific
heat capacities of copper and water.

_ (T1+T,)2
2.153. AS = CV ln_léT_lT-:_- >O.

2.154. (a) P=1/2¥; (b) N:li’l%gg—‘)zso, where 7 1075 s is

the mean time which takes a helium atom to cover distances of

the order of the vessel’s dimensions.
2.155. Qp, = NUI(N/2)V2 = 252, Pyyy = Qp /2N = 24.6%.

2.456. P,—— D' . 132, 5/32, 10/32, 10/32, 5/32, 1/32
nl (N —n)1 2V
respectively.
2.157. Pn=71(—ﬁlﬁ_—n—),-l)" (1—p)¥~™", where p=V/V,.

2.138. d=y6/nnon2=0.4 pm, where n, is Loschmidt’s num-
ber; (ny=1/m2=1.0-10".

2.159. Will increase Q/Q, = (1 + AT/T,)Nal? = {0t.31-10"
times.

2.160. (a) Ap = 4a/d = 13 atm; (b) Ap = 8a/d = 1.2-10-% atm.

2.461. h = 4a/pgd = 21 cm.

2.162. o = t/gpyd (1 — n¥/n)/(n* — 1).

2.163. p = p, + p gh + 4a/d = 2.2 atm.

2.164. h = [p, (n®* — 1) -+ 4a (n* — 1)/dl/pg = 5 m.

2.165. Ah = 4a | cos 0 | (d, — dy)/dyd,pg = 11 mm.
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2.166. R = 20/pgh = 0.6 mm.

21467, 2 = l/(1 + pd/4a) = 1.4 cm.
2.168. a = [pgh + pol/(l — R)l d/4 cos 6.
2.169. h = 4a/pg (dy — dy) = 6 cm.
2.170. A = 2a cos Gfpgxﬁcp.

2471, V, = Yyndr )/ B0 _ o9 omys,

2.472. R, — R, =~ Y/gpgh®/a = 0.20 mm.

2473. m =~ 2nR%*x| cos 6 |(n? — 1)/gh = 0.7 kg.

2.174. F ~ 2am/ph®* = 1.0 N.

2.175. F = 2nR%/h = 0.6 kN.

2.176. F = 202l/pgd® = 13 N.

2477, t = 2InRYart.

2.178. Q = 2nal/pg.

2479. (a) F = niad? = 3 pJ; (b) F = 2nad?® = 10 pJ.

2.480. AF = 2nad? 21 — 1) = —1.5 ul.

2481. A" = F + pV In (p/p,), where F = 8nR%a, p = p, +
+ 4a/R, V = %/;nR3.

2.182. C — C, = Y,RI(1 + 3/gporia).

2.184. (a) AS = —2 (da/dT) Ac; (b) AU = 2 (& — T da/dT) X
X Aoc.

2.185. A = AmRT/M = 1.2 J.

2.186. m, = (V —mV)/(V, — V) =20 g, V, =1.0 1. Here
Vi is the specific volume of water.

2.487. m; =~ Mpy (Vo — V)/RT = 2.0 g, where p, is the stan-
dard atmospheric pressure.

2.488. n = (n — 1)/(N — 1); n=1/(NV + 1).

2.489. AS = mq/T = 6.0kJ/K; AU = m(q — RT/M) = 2.1 MJ,
where T = 373 K.

(Q—mcAT)

2.190. b ~ m
heat capacity of water, AT = 100 K, ¢ is the specific heat of vapo-
rization of water, T is its boiling temperature.

2491. A = me (T — T,) RT/qM = 25 J, where ¢ is the specific
heat capacity of water, T is the initial vapour temperature equal to
the water boiling temperature, as is seen from the hypothesis, g is
the specific heat of vapour condensation.

2.192. d ~ 4aMpRT = 0.2 pm, where p is the density of
water.

2.193. u = np,V/ M2nRT = 0.35 g/(s.cm?), where p, is the
standard atmospheric pressure.

2.494. p = uV 2aRT/M = 0.9 nPa.

2.195. Ap = a/VEZM = 1.7-10* atm.

2.196. p; =~ pq. About 2.10* atm.

2.198. a = 2"/o, R?T%/p., = 3.6 atm-1*/mol?,
= 0.043 1/mol.

2.499. V.. = 3/ RT../Mp., = 4.7 cm®/g.

2.200. (m + 3/v%) 3v — 1) = 8¢, v = 1.5,

= 20 cm, where c¢ is the specific

b=4RT ¢,/pe,=
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2.201. (a) Viypaxe=3bm/M=05.01; (b) Pmax=a/2762=230 atm.

2.202. T., = 8/5; a/bR = 0.30kK, p.. =1/ M/b =0.34g/cm3,

2.203. n = &3 Mp../pRT., = 0.25, where p is the density of
ether at room temperature.

2.204. Let us apply Eq. (2.4e) to the reversible isothermic cycle
1-2-3-4-5-3-1:

T§ds =<§dU+<§>pdV.
Since the first two integrals are equal to zero, @p dV = 0 as well.

The latter equality is possible only when areas I and /7 are equal.

Note that this reasoning is inapplicable to the cycle 1-2-3-1, for
example. It is irreversible since it involves the irreversible transi-
tion at point & from a single-phase to a diphase state.

2.205. n = c | t |/g=0.25, where g is the specific heat of melt-
ing of ice; at ¢ = —80°C.

2.206. AT = —(TAV'/q) Ap = —17.5 mK, where g is the spec-
ific heat of melting of ice.

2.207. V., ~ qAT/TAp = 1.7 m®kg, where ¢ is the specific heat
of vaporization, 7 = 373 K.

2.208. p,, &~ py (1 + ¢MAT/RT?) = 1.04 atm where ¢ is the
specific heat of vaporization, p, is the standard atmospheric pressure,
AT =11 K.

2.209. Am/m = (QM/RT — 1) AT/T = 5%.

2.210. p=p, exp lr_—q—RA{ (Tio——i.i—)] . These assumptions are admis-

sible in the case of a vapour narrow temperature interval, far below
the critical temperature.

2.211. n ~ cpTAV'/¢* = 0.03, where ¢ is the specific heat ca-
pacity of ice, T ~ 273 K, ¢ is the specific heat of melting.

2.212. (a) 216 K, 5.1 atm; (b) 0.78, 0.57, and 0.21 kl/g.

2.213. AS ~ mcln (T,/T,) + q/T,] = 7.2 kI/K.

2.214. As =~ q,,/T, + ¢ In (T,/Ty) + ¢,/T, = 8.6 J/(g-K).

2.215. AS = me ln (T/T,) = —10 J/K, where ¢ is the specific
heat capacity of copper, 7 = 273 K (under these conditions only a
part of the ice will melt).

2.216. (a) When myc,t, << maq, not all the ice will melt and

= T gL\ )
AS =mac, - —1—In )_9.2 J/K;
(b) When m,c,t, > m,q, the ice will melt completely and
T T
AS = ”‘Tllq+c2 (m,ln—TT-—mzln-T—’) =18 J/K,
m Ty meTy—mygles
my-tmsg '

2.217. AS =mgq (—TL_TL’) +mc(%‘-—1— ln-;:—:)=0.48 /K.

2.218. C = C, — qMIT = —74 J/(K-mol), where C,=
= Ry/(y — 1).
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where T =

[Ty + Cp In (T,/T).

2.219. AS = gM
) M~ 0.37; (b) n 2~ 0.23.

n

e

2.220. (a ~
%.%21. A= Al/ln n.
-222. ( -at; (b (t) = 1/a
2.223. — -

hourS. 3 ( 0'06 pmv T = 0.13 ns; (b) ?\. = 6 Mm’ T = 3.8

2.224. 18 times.
2.225. ) = (2N 4/3b)% (kT o/V 2np,) = 84 nm.

2.226. v = nd®p N,V 2y/MRT, = 5.5 GHz.
2.227. (a) 0.7 Pa; (b) 2-10% cm=3 0.2 pm,

2.228. (a) v=)"2ndn (v) =0.74.101 1.

d) v="1,V2ondn2)=1.0x 102 st.cm=3, whe =
@)=V BRT/nl. ’ e T Rl
2.229. (a) A = const, v oc }V'T; (b) A « T, v oc 1/)/T.
2.230. (a) A = const, v increa imes;
timgsé v increases n times. e Vn timess (b) & decreases n
231, ~6/5, -
ocT—:uz,1 v(iz )]v‘soc Vi v oe V=05 (b) A ocp=37, v oc p¥7; (c) A oc
2.232. (a) AoV, v ocV-m+bz.  (h) 3 -yn n+1)f2n,
(c) Aoc THA-M y o TM+h/2n-1) () B e P v o pr
2.233. (a) C ="Y.R (1 2i) =23 J/(K-mol); (b) C =
= Y,R (i 4 2) = 29 J/(K -mol).
2.234. n=nee-t*, where t=4V/S v, (y=V 8RT/nM.
2.235. Increases (1 +n)/(1+)/M) times.
2.236. Increases a3/p = 2 timeg.) '
2.237. (a) D increases n times, n=const; (b) D increases
n3/22times, n increases 7 times.

-238. D decreases n*® ~ 6.3 times, 1 increases n'/% ~ 1.6 ti
2.239. () n =3; (b) n = 1; (¢) n = 1. w10 tmes.
2.240. 0.18 nm.

2.241. dar/dye = 1.7.

2.242. N, ~ 2moR¥AR; p = V2 kT/nd*nAR = 0.7 Pa.
2.243. m = (1/R* — 1/R?) N /4no.
2.244. N = Y,anwat/h.

2.245. N =1/30a*p V nM/2RT.
_. _na*M | p3—p3 |
2.246. e =l
2-247. T == (xlTl/ll + %2T2/l2)/(%1/l1 + %2/l2)-
2.268. % = (I, + L) (L/%y + Ly/xy).
;;gg T (z) = T, (To/T)*F; q = (/1) In (T4/T).
:290. AT = (AT)e~*, where a = (1/C, + 1/C,) Sx/l.
2.251. T = T, {1 + (2/1) (To/T)** — 11*3, where z is the dis-
tance from the plate maintained at the temperature 7,

a) P =
a)A =
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2iR%2 (7312 —T3/?) . .
2.252. q= AN AV T =40 W/m2, where i=3, d is the
effective diameter of helium atom.
2.253. A = 23 mm >, consequently, the gas is ultra-thin;
=p W) @y — 1)/6T(y — 1) =22 W/m? where (v) =
= V8RTIaM, T =Yy (T, + Ty).

r

T,—T
2.254. T = T‘+HZ%?73L1) In 'R—I.
Iy—T 1 1
2.255. T=T,+m:(ﬁ_7)_
2.256. T = T, + (R* — r*) w/éx.
2.257. T = Ty + (R* — r*) w/6x.

3.1. The ratio F./F,, is equal to 4-10** and 1-10% respectively;
g/m = 0.86-10-1° C/kg.
3.2. About 2-10' N,

3.3. dg/dt=3/,aV 2ne,mg/l.

3.4 gy = — 4199 , 3= Ty Vi;—i“l'z 1_{4_1 )
T (Var+Va)? Vat+vVae
qq

3.5. AT:SJ‘L—%OF'
3.6. E = 2.7i — 3.6j, E = 4.5 kV/m.

— ql .
3.7. E= V Zne, (12 4 z2)3/2

a4
8.8, E=3im =010 kV/m.
3.9. E- gt

~ -L—
= e L For 1> r the strength E =~ Tnegi® 28

in the case of a point charge. E,nax=m_‘;—%—; for I=r/V 2.
3.10. E=£%.
3.41. F= Z%.
3.42. (2) =23 (b) E=m%fzm——;§72—. For z>R the

~ _p—
strength ENlmao

gt where p = nR2%\,.
3.143. (a) E=

; (b) E !

= Ime ot —ai) In both cases

- 7
hregr Vai 12
E~—2— for r>a.

4rigyr?

3.44. E = ’“V?‘, The vector E is directed at the angle 45° to
the thread.

AV2. —0.
3.15. (a) E= g (b) E

€
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3-16. E - - 1/38"/80-

3.17. E = —'/;ko,/e,, where k is the unit vector of the z axis
with respect to which the angle 0 is read off. Clearly, the field inside
the given sphere is uniform.

3.18. E = —%/aR%e,.

3.19. | @ | =1/,AR/e,. The sign of @ depends on how the direc-
tion of the normal to the circle is chosen.

1 .

3.20. 1¢|=3q;(1—71_+_m—_/1)=‘)- The sign of @ depends on
how the direction of the normal to the circle is chosen.

3.21. | D | = Ympry (R? — r2)/e,.

3.22, E g = Mnggl.

3.23. E =1/, gy/e,, with the direction of the vector E corres-
ponding to the angle ¢ = n.

3.24. ® = 4nRa.

r 3r R3

3.25. (a) E:%‘;o—“—ﬁ) for r<R, E=%eo—r-£ for r>R;
(b) Epax="19 poR/e, for r,, =2/, R.

3.26. QZQTERZQ, Ezl/za/SO.

3.27. E= P (1 _e-o%),  Accordingly, Ex$ and Ex
0

3eqour?
~ _ Po
~ 3eqar®
3.28. E=1/,ap/¢,.

3.29. E = Y,ap/e,, where the vector a is directed toward the
axis of the cavity.

-1 _ 1
3.30. Ap=5Ln (1 VWEF)'

A
3.31. qai——cpzzmlnn:S kV.
3.32. ¢ ="/,0R/e,, E=1/,0/¢,
3.33. =2L:0(V1_—+(R/l)2-—1), E=5 (1——==) - When

2eq VEL+R?
oR g, ~ -7
1—0, then @:-E)—, E=-m, when I>» R, then o= Zmegl *
Ex~ Hz—ol_‘“ where ¢=onR2,

3.34. ¢ = oR/ne,.

3.35. E = —a, i.e. the field is uniform.

3.36. (a) E = —2a (zi — yj); (b) E = —a (yi — zj). Here i, j
are the unit vectors of the z and y axes. See Fig. 16 illustrating the
case a > 0.

3.37. E = —2 (azi + ayj 4 bzk), E = 2V @® (& + 3°) + b2,
(a) An ellipsoid of revolution with semiaxes }/ g/a and V ¢/b. (b)
In the case of ¢ >0, a single-cavity hyperboloid of revolution;

when ¢ = 0, a right round cone; when ¢ << 0, a two-cavity hyper-
boloid of revolution.

3 2
3.38. (a) @o=g—n; (b) 9=, (1 —2=), r<AR.
8me R 3R
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3.39. E:VE$+E§=4—M%V1+3(:0526, where E, is the

radial component of the vector E, and Eg is its component per-
pendicular to E;.
__p_ 3cos?20—1 __p 3sinfcosb |
3.40. E,= 4nig, r3 v B = 4me, r3 !
E _L p at the points located on the lateral surface of a cone whose axis
is directed along the z axis and whose semi-vertex angle 0 is found

o
-

Q
W
%
§

)
W
»%
Z

(a) (6
Fig. 16.
from the relation cos 8 = 1/)/3 (8, = 54.7°, 6, =123.5°). At these
points £ = E, =Z—nls—/§3-.

3
14
3.41. R= }/m

Al A
3.42. (PN'EFO’_COSG, ENW. l -
g z _ g —2x :
3.43. 9= 4ne, (Rt z2)3/2°7 T 4ne, (R4 2%)%/2° where
¥
¥
£z
-///—\\\ /// S
z
-R{Z |\ ”///h/z_ Z g
~
Fig. 17. Fig. 18.

E. is the projection of the vector E on the z axis. The func-

tions are plotted in Fig. 17. If | z| > R, then (Pzzﬁzl—ﬁ and
0
~—2_
E:~ 2nggzs *
2
3.44. = & 2 E.——— 98 See Fig. 18.

eV AT R Ze, (e + B2 "
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3.45. g~ (1———2 ), Ea—9F
¢~ = 80( Vz2+R’)’ 2e, (z2+ R%)3/2°

~ 4+ L
then (p,\,ilw%ch and FE

If 2SR,

z-Q%;.;, where p=nR2sl. In the
0

formulas for the potential ¢ the plus sign corresponds to the
space adjoining the positively charged plate and the minus sign
to the space adjoining the negatively charged plate.

A
3A&(@F:ﬂ;@)E=—Zﬁﬁ;@)Fzzﬁﬁ,
3.47. F=5 0 =2.1.10"% N.

0
3.48. ¢ = —azy -+ const.
2
3.49. 9=ay (—y?’——:cz) --const.
3.50. ¢ = —y (az + bz) + const.
3.51. p = Beax.
3.52. p = 2¢,A¢/d* E = pdle,.
3.53. p = —b¢g4a.
3.54. q =41V nekz.
__
3.55., A= Tomesl -
29 2—1) ¢ 1
35&(ﬂF:L%%a%i;&)E=2(L—ﬂﬁ)]éﬁ.
. _@eVz—n¢
3.57. F———W——
__3p
3.58. F_-——BZMOH .
- gl —
3.99. 0= — PR fing= —¢-
A2 I\
3.60. (a) Fy= ’imaol » (b) =T Er
3.61. (a) 0 =—r, (b) U(T):—————_-°__—.
nl 2 2 2
3ﬁz(@a=h___ﬂ—+—-agg=jq 9 .
1 2 @Y imeg 4 (1417, (RO
q
B R
= Zne; R VAiF4U/R? /"
__4a
3.63. o= Tned .1 1
—_4 1
3.6 ¢=g (v~ 5~ +77) -

1r—1ja if a<r<b
. _i . o =Y
3.65. = ——qy; fP——,maox{ (1—blayr it r> b.
3.66. (a) Eyy = Ag/d, Ejg = Eg, = Y3 Egq; (b) |0y ] =04 =
= l,e,Aqld, a, = | 04 | = 3/38,Aq/d.
3.67. ¢, = —q (I — 2)/l, g, = —qz/l. Instruction. If the charge
g is imagined to be uniformly spread over the plane passing through
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that charge and parallel to the plates, the charges ¢, and g, remain,
obviously, unchanged. What changes is only their distribution, and
the electric field becomes easy to

calculate. f l/\
3.68. dF/dS = Y/,0%¢,.
3.69. F=5 g 0 &z

3.84. (a) E, = 2eEy/(e + 1), E, = 2Ey/(e +1),D, = D, =
= 2ee,E /(e + 1); (b) E, = E,, E, = Ey/e, D, = D, = &,E,.

3.85. (a) E, = E, = E;,, D, = ¢4E,, Dy = eD; (b) E, = E, =
= 2Ey/(e +- 1), D; = 2e,Eo/(e + 1), D

3.86. £ = g/2neg,(e + 1) r2.

3.87. p = pye/(e — 1) = 1.6 g/cm®, where ¢ and p, are the per-

o = &D,.

2
_"‘“moRz=O-5 kN. \/Tz- mittivity and density of kerosene.
3.70. F = Y, nuR%? ¢,.
. ) — T : £, 0
3. N= s = 3-10°, Fig. 19. <
where n, is the concentration of molecules.
3.72. F=_2¢¢ -2 2z

4nleyl?
1.1R (attraction)

—-————. £

_ ; ;I I
D2 . = ) = I
3.78. (@) x=R/V2; (b) z { 0.29R (repulsion). See Fig. 19. ’ g ‘

3.74. P=2—1 _a . o _ _ &1 R r
o e dn 9= q ] )
3.76. qin,= —q(e—1)/e, qaut:q(g_1)/g_ Fig. 21. Fig. 22.

3.88. Omux = (e — 1) gof = 3.50C/m?, ¢’ = aR? (e — 1) g F =

¥ ¥t = 10 pC.
| | 3.89. (a) Since the normal component of the vector D is contin-
£ | uous at the dielectric interface, we obtain
bEg 0 =—ql (e — 1)/2nr3 (¢ + 1), for I -0 and o' —0;
. | | () ¢ = —q (e — 1)/(e + 1).
g a b r 02 i p 3.90. F = ¢* (¢ — 1)/16:eyl* (e + 1).
(a) g/2% (1 + €) r? in vacuum,
v 3.91. D :{ /237 (4 2 in dielectric;
Fig. 20. eg/2n (1 + €)r ic;

E = g/2ney (1 + &) r?
¢ =q2ne, (1 + &)r
3.92, 0’ = ql (e — 1)/2nr3e (¢ + 1); for I -0 and ¢' — 0.
3.93. ¢’ = ql (¢ — 1)/2nr3e.
3.94. E, = Ph/e,d (between the plates), E, = —(1 — h/d)P/g,,
D, = D, = Ph/d

} both in vacuum and in dielectric.
3.77. See Fig. 20.

3.78. E=-%— Vcos?a, + e2sinfa,=5.2 V/m;

tan o = & tan @,, hence, a = T74°; 0'=ﬁ’—(%:ﬂEocosa0=64 pC/ma2,

3.79. (a) <§EdS= e—1 nR2E, cos 6; (b) @Ddrz_eo (e—1) X 3.95. o’ = —2a, i.e. is independent of r.
; ’ : 3.96. (a) E = —P/3¢,.
X 1E,sin 6. - F —
l for l<<d 12/%¢e, for l<d 3.97. Ey, = E — P/3¢,.
3.80. (a) E={ pifee, for 1 <d, q,={ —pUicee, dor Id, 3.98. E = 3E/(e + 2), P = 3¢,E, (¢ — 1)/(e + 2).
/ pd/eg for l>d, —(d/2e +1—d) pd/e, 3.99. E = —P/2¢,.
for 1>d. 3.100. E = 2E,/(e + 1); P = 2¢,E, (¢ — 1)/(e + 1).
T,he plots E, (z) and ¢ (z) are shown in Fig. 21. (b) o’ = pd (e — 1)/e, 3.101. C — 4aeseRy
p' = —p (e — 1) S Y T TE Y RIR,
3.81. (a) E——{ pri3e;e  for r < R, 3.102. The strength decreased !/, (e 4-1) times; ¢ =
e “ | pR3¥3e,2 for r> R; =1/,C& (e — 1)/(e + 1).S
(b) o' = —p (e — 1)/e, ¢’ = pR (e — 1)/3e. See Fig. 22. & : I
382 E = —dP/ieoR pltle—1) d 3.103. (a) C= g—rgrms (b) 0" =&V =5~

3.8.E=—-P,(1— .x2/d2)/so, U = 4dP/3e,. 3.104. (a) C =g, (e,—&,) S/dIn (g4/e,); (b) p' = — gle,—e,)/dSe2.
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3.105. C =4neqa/ln (Ry/Ry).

3.106. When &,R,E,,, = e, R,E,,,.

3.107. V = R,E, [In (Ry/R,) + (ei/e,) In (Ry/R,)I.

3.108. C =~ ey In (b/a).

3.109. C =~ 2ney/ln (2b/a).

3.110. C ~ 2ne, ea. Instruction. When b >> a, the charges can
be assumed to be distributed practically uniformly over the sur-
faces of the balls.

3411, C =~ 4neqa.

3.412. (a) Ciotar = C1 +Co +Cy; (B) Crort = C.

3.113. (a) C = 2¢,8/3d; (b) C = 3¢,5/2d.

3M4. VLV, (1 +CJC) =9 kV.

3.415. U = &/(1 +3n + 7% =10 V.

3.116. C, = C (V5 — 1)/2 = 0.62C. Since the chain is infinite,
all the links beginning with the second can be replaced by the ca-
pacitance C, equal to the sought one.

3.M7. V,=¢q/C, =10 V, V,=4q/C, =5 V, where q=

((PA — (PB + &) C.C,/(C, + Cs).

A18. = (&, — &)/(1 4+ C/Cy), Vo=(&, — &,)/(1 + C,/C).

3 119. q = I&— é ICCg/(Cl + C,).

3.120. 9, — @z =¢& Cals — C‘C“ In the case when C,/Cy=

(Cl+c 3‘ 4)
- C3/CA.
14

3421 g=—pr— - =0.06 mC.
3.122. ¢, =&C,, go= —EC,C,/(C1+Cy).
3.123. ¢, =§C, (C;—C)/(Cy+ () = —24 puC,

go= ECy (Ci— C)/(Cs +C2) = — 36 uC, gy—& (Ca— Cy) — +60p C.
3.124. 9o — @ =(C.8:—C,&,)/(Ci + Cy+ Cy).

_ &l + €303 — 81 (Cy,+Cy)

3.125. ¢ e ,
oy = E1C1 & EaCa— &, (C1 4 Cy) LB 60— 6, (O )
C1+Cy+Cy v C1+Cy+Cy
2C,C3 +C3(Cy +Cy)
3.126. Cpppyy = 212253 2
6 Cuotar Cy+Ca+2C,

3.127. (a) W= (V' 2+4) @?ldnesa; (b)) W=()2—4) ¢*/4nea;
(c) W= —V 2¢*/4neqa.

3.428. W~ — 220

nE, a

3.129. W = —q%8me,l.

3.130. W = q,q,/4ne,yl.

3.431. AW = — Y,/%C,C4/(C, + C,) = —0.03 m].

3.132. Q = &*CC,/(2C + Cy).

3.133. Q = 1/,C&:. It is remarkable that the result obtained is
independent of &,.

3034 W = W, + Wy + W, = —

_ i a3 0192
_43180 (2R1 + 2Rz+ Rz )'

312

3.135. (a) W = 3¢%/20neoR; (b) WJW, = 1/5.

3.136. = (q*/8neye) (1/a — 1/b) = 27 ml.
3.137. A = (¢*/8ney) (1/R, — S UR).

_q(q +q/2) ¢ 1
3.438. A—10bIB (2 2.

3.139. F, = 0% 2¢,.
3.140. A = (¢*/8ne,) (1/a — 1/b).
3.141. (a) A = q® (z, — 1)/2¢,S;
(b) A =¢,SV? (zg — 2,)/224,.
3.142. (a) A = 1,CVn/(1 —n)?2 =1.5 ml;
(b) A= Y,CVne (¢ — 1)/[e — n (e — 1]* = 0. 8 mJ.
3.143. Ap = go& (e — 1) V¥2d® = 7 kPa = 0.07 atm.

3.144. = (¢ — 1)o%/2¢,60g -
3.145. F = nRe, (¢ — 1) V/d.
3.146. = (g — 1) g, R*V?/4d.

3.147. I = 2neqaEv = 0.5 uA.

3.148. T ~2neg, (e — 1) er/d = 0.11 pA.

3.149. (a) a = (a; + na,)/(1 + 1); b) & =~ (o, + na)/{(1 + n).

3.150. (a) %/R; (b) /mR (c) 3/ ,R

3.151. R, = R(V3 —1).

31452. R= (14 V1 + 432/31) R,/2=6 Q. Instruction. Since
the chain is infinite, all the links beginning with the second can be
replaced by the resistance equal to the sought resistance R.

3.153. Imagine the voltage V to be applied across the points 4
and B. Then V = IR = I R,, where I is the current carried by the
lead wires, I, is the current carried by the conductor AB.

The current I, can be represented as a superposition of two cur-
rents. If the current 7 flowed into point A and spread all over the
infinite wire grid, the conductor AB would carry (because of symmet-
ry) the current I/4. Similarly, if the current I flowed into the grid
from infinity and left the grid through point B, the conductor 4B
would also carry the current I/4, Superposing both of these solutions,
we obtain I, = I/2. Therefore, R = R,/2

3.154. R = (p/2xnl) In (b/a).

3.155. R = p (b — a)/4nab. In the case of b — 0 R = pl/4na.

3.156. p = 4nAtab/(b — a) C In n.

3.157. R = p/2na.

3.158. (a) j == 2alV/pr® (b) R = pl4na.

3.159. (a) j = LV/2pr*1In (l/a); (b) R, = (p/n) In (U/a).

3.160. I = VC/peey = 1.5 pA.

3.161. RC = pee,.

—

3.162. 0 =D, = D cos a; j = D sin a/egyp.

3.163. I = VS (0g — 01)/d 1n (0,/0,) = 5 nA.

3.165. ¢ = e, (py — p1) 1. )

3.166. 0 = &,V (250 — £101)/(p1dy + pods), 0 = 0 if ep,=
== €900

3.1467. g = eof (g,05 — €1P)).

3.168. p = 2¢,V (y — 1)/d* (q -+ 1).
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3.169. (a) R, = 2na/S?; (b) E = 2nal/S>

3170. t = —RCIn (I — V/Vy) = 0.6 ps.

3.171. p = t/ege In 2 = 1.4.10*® Q.m.

3.172. I = [(y — 1) &/R] e—nURC,

31473. V = &/(n + 1) = 2.0 V.

3474, ¢, — ¢, = (&, — §&,) R/(Ry + Ry)) — & = —4 V.

3.475. R = R, — R;, Ag = 0 in the source of current with in-
ternal resistance R,.

3.176. (a) I = a; (b) 94 — ¢ = O.

3177. ¢, — @5 = (&, — &,) R/(R, + R,) = —0.5 V.

3817?& I,=&R,/(RR,+RR, + R,R) =1.2A,I, = I,R/R,=

317? V =TVoRz/IRl + R, (Il —2)z/ll; for R>R, V ~
=~ Vya/l.

3.180. & = (&,R, + &,R)/(R, + R,), R, = R,R,/(R, 4 R,).

3.181.. I = (R&; — R,&))/(RR, + R\R, + R,R) = 0.02 A, t%l)e
current is directed from the left to the right (see Fig. 3.44).,

3.182. (a) I, = [R; (& — &) + Ry(&,+ E)V/(RR, + R,R; +
+R3R)= 0.06 A; (b) o —gp =&, — LR, = 0.9V,

gigz I = (& (R, T%,Rﬁ) E{;?goR;;/[R (f%zé}- 1%) + R.R,l.

AB4. @, — = — R
n {;2{;3 +(PR3R[3’B: _*1.20 %7 1+ Ry) 2y (Ry +R3))/ (R R+

A85. I, = IR — R — /(R.R
+ R.RY :10.2 A.3 (9, $2) + Ry (9 9)l/(R1Ry + RyR, +

v Ri+R,

3486. I~ ( prprrmmm, A mE R ) = 1O0A.
The current flows from point C to point D.

3.1487. R, p = r (r + 3R)/(R 4 3r).

3.188. V = 1/,& (1 — e—2U/RC),

3.189. (a) Q = “/5 ¢®R/At; (b) Q = Y/, In 2-g*R/At.
3.190. R = 3R,. ! ™ e : !
3192. Q =J(E -V)=06 W, P= —JV = —2.0 W.
3.493. I = V/2R; P, = V¥4R; n = 1/2.
3.194. By 2n = 2%.
3.1495. T' — Ty = (1 — e—Rt/C) V?/kR.
3.196. R, = R\R,/(R, + R,) = 12 Q.
3.197. R = R,R,/(R, + R,);
Qmax = (&R, + &,R\)*/4R\R, (R, + R,).

3.198. n = V' Nr/R = 3.

3.199. Q = Y/,C&*R,/(R, + R,) = 60 mJ.

3.200. (a) AW = —1,CV?n/(1 — n) = —0.15 m]; (b) 4 =
= 1,CV?n/(1 — n) = 0.15 m]J.

3.201. AW = —Y, (e — 1) CV? = —0.5 mJ, Apech =
=1, (e — 1) CV? = 0.5 mJ.

3.202. h ~~ Y,e, (e — 1) V?/pgd?, where p is the density of water.

3.203. (a) g = goe~t/ee; (b) Q = (1/a — 1/b) qi/8ne,e.

3.204. (a) g = go (1 — e~"RC) = 0.18 mC; (by 0=
= (1 — e 2RO /IC = 82 m].

314

3.205. (a) I = (Vy/R) e-2t/BC; (b) Q =1/, CV2

© 3.206. e/m = lor/gR = 1.8-10" C/kg.

3.207. p = Um/e = 0.40 uN-s.

3.208. s = enl (v)/j~ 107 m, where n is the concentration of
free electrons, (v) is the mean velocity of thermal motion of an
electron.

3.209. (a) t=enlS/I =3 Ms; (b) F = enlpl =1.0 MN,
where p is the resistivity of copper.

3.210. E=(I/2neyr) YV m/2V =32 V/m, Ag=(I/4ney) V m/2eV =
=0.80 V.

3.211. (a) p(z)= —"%/geqaz—2/3; (b) j="4/4e0a%2) 2e/m.

3.212. n = Idle (uj + u;) VS = 2.3.10% cm-3.

3.213. uy = w,?/2V,,.

3.214. (a) n; = I, /eV = 6-10° cm-3-s-1; (b) n = V nr —
= 6-107 cm-3.

3.215. t=(n—1)/ V rn, =13 ms,

3.216. t = eqUlend® = 4.6 days.

3.217. I = evye®d,

3.218. j = (e — 1) en,/a.

3.219. (a) B = wol/2R = 6.3 uT; (b) B = poRUI/2(R® + 22)*=

3.220. B = np,l tan (n/n)/2nR, for n -—>oc0 B = u,J/2R

3.221. B = 4p,l/ad sin ¢ = 0.10 mT.

3.222. B = (n — @ + tan @) pol/2nR = 28uT.

I/ 2n— I (3n 2

3203, () B=lpr (220 3); ) p=g (T4 2E).

3.224. B =~ phl/4n®Rr, where r is the distance from the cut.

3.225. B = p,I/n*R.

3.226. (a) B = (uo/4n) (nl/R); (b) B = (po/dn) (1 + 37/2) I/R,;
(¢) B = (uo/4n) (2 + m) I/R.

3.227. B = (uo/4n) IV 2/1=2.0uT.

3.228. (a) B = (no/4n) Va&—+n2I/R=0.30 uT; (b) B = (u,/4m) x
X V2+2n+n2l/R=0.34uT; (c) B=(uo/4n) V 2I/R=0.11 pT.

3.229. (a) B = p,i/2; (b) B = poi between the planes and
B = 0 outside the planes.

3.930. B:{ p.e]:x insit'ie the plate,

uejd outside the plate.

3.231. In the half-space with the straight wire, B = py//2ar,
r is the distance from the wire. In the other half-space B = 0.

3.232. The given integral is equal to ug/.

3.233, B[ [aelirl for r< A,

1,1 [jr] R2/r? for r=AR.
3.234. B = 1/,u, (jl], i.e. field inside the cavity is uniform.
3.235. j (r) = (b/wo) (1 + &) ret,
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3.236. B=pnl/V 1+ (2RI

3.237. (a) B="1/yuend (1—2z/V 22+ R?, where >0 outside
the solenoid and z<C0 inside the solenoid; see Fig. 23; (b) zy=

=RU—20)/2V n(1—n) ~ 5R. N
3.938. B:{ (to/h)V (1 — (A/21R)2=0.3 mT, r<<R,
3.241. @ — By/2 — penlS/2,

(no/am) 21/r, r > R.
10'-5/6°
.8+
where @, is the flux of the vec- 0%

3.239. n &~ N/n = 8-10%.
3.240. D = (po/dn) I =
tor B through the cross-section of 0y )
the solenoid far from its ends. ‘
3.242. @ = (u,/4m) 2INh In n= 02 \\
= 8 p:Wb. 1 L 1 I |

=1.0 pyWb/m.

3.243. Pm = 2nR®B/p, = 2 -1 9 12 gk
=30 mA-.m?2
3.244. Pm = Y,NId* = Fig. 23.
=0.9 A-m?
IN In (b/
3.245. (a) B:”—"Q—(E%El)—“-)=7 wT;

(b) pm = Y3nIN (a® + ab + b = 15 mA-m?
3.246. (a) B = You00R; (b) pp = Y, nooR%.
3.247. B = 2?/gpy00R = 29 pT.

3.248. p,, ; 1/’5511-? ©; Pm/M = q/2m.

3.249. B =

3.250. Fm/Fe = pyel? = (v/e)? = 1.00-1078.
3.251. (a) F, = 9012/41? = 0.20 mN/m;

= 0.13 mN/m.

3.252. B = nd%, /4RI = 8 kT, where 0, is the strength of
copper.

3.253. B = (2pgS/I)tan 6 = 10 mT, where p is the density
of copper.

3.254. B = Amgl/NIS = 0.4 T.

3.255. (a) F = 2polly/n (42 — 1) = 0.40 uN; (b) A=
= (noallo/n) In [(2n + 1)/(2n — 1] = 0.10 nJ. ~

3.256. R~V wle, (InM)/n=0.36 kQ.
3.257, F,=p,I%/n2R.
Mo 251,

3.258. F,= ey Tl (1 +b/a).

3.259. Fy = B*/2u,.

3.260. In all three cases F; = (B} — B})/2p,. The force is direct-
ed to the right. The current in the conductmg plane is directed
beyond the drawing.

3.261. Ap = IB/a = 0.5 kPa.

3.262. p == u,I%/8n%R2.

3.263. p = 1/,unI2.
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(b) Fy = pol¥nl =

3.264. I);,,=V 2F;n/uonR.

3.265. P — 12B*d*R/(R + pd/S)?;
is P = P, = 1/,*B%S/p.

3.266. U = 1/,p, 12/n2R2ne = 2pV.

3.267. n = ]B/eE = 2.5.10% ‘1, almost 1 : 1.

3.268. u, = 1/mB = 3.2.10"® m?/(V-s).

3.269. (a) F = 0; (b) F = (po/an) 2[p,/r*, F{B;
= (uo/4n) 2Ip,/r2, Fir.

3.270. F = (py/4n) 6nR*Ip,x/(R® + z?)°/2

3.271. F = 3/yuoPimPam/nl* = 9 nN.

3.272. I' =~ 2Bz%/u R* = 0.5 kA.

3.273. B’ =BV u?sina + costa.
3.274. (a) @HdS:nRZBcose.(u-—n/Wo;

(b) &Bdr:(i—p)BlsinB.

3.275. (a) Iy, = yI; (b) I;q = %I, in opposite directions.
3.276. See Fig. 24.
3.277. B totatls 1 5
Uipe mr *
3.278. B = 2B,u/(1 + p). ~ p
3.279. B = 3B,u/(2 + p).
3.280. H, = NI/l = 6 kA/m. 7
3.281. H =~ bB/pnd =
=0.10 kA/m. 0 T
3.282. When b <« R, the per-
meability is p &~ 2nRB/(uNI —
— bB) = 3.7-10%
3.283. H = 0.06 kA/m, pmpme, = 1.0-10%
3.284. From the theorem on circulation of the vector H we
obtain

when R = pd/S, the power

{¢) F =

Fig. 24.

By 2ol _ WoWd 51 _0.987H (kA/m).

Besides, B and H are interrelated as shown in Fig. 3.76. The requir-
ed values of H and B must simultaneously satisfy both relations.
Solving this system of equations by means of plottmg, we obtain
H =~ 0.26 kA/m, B ~ 1.25 T, and p = Blp,H ~ 4-10%

3.285. F =~ 1/,xSB% p,.

3.286. (a) zm=1/V4a; (b) ¥ =poFrmaxV e/a/VB: =3.6-107%

3.287. A ~ Y, VB p,.

3.288. &, =By )V 8w/a.

3.289. I = Bvl/(R + R,), where R, = R R,/(Ry, + R,).

3.290. (a) Ag = 1/,0%*m/e = 3.0 nV (b) Ap =~ YyoBa® =
= 20 mV.

C
3.291. S Edr= —,0Bd? == —10 mV.
A
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3.292. &; = Y/5(—1)" BaPt, where n =1, 2, ... is the num-
ber of the half-revolution that the loop performs at the given mo-
ment ¢ The plot &; (¢) is shown in Fig. 25 where t, = } 2nn/p.

3.293. 1,4 = a/r, where a = Y,u,lwl/nR.

Mo 2la%
3.294. 8i—ﬁ-x(x+a). & -
3.295. €, ="/, (0a*B® 4 2mg sin wt)/aB. P
3.296. y— mgR sin a

B2]2 ° //

/ﬂ
i 0
gsin o Lt ¢
3.297. w= T BT - \7|ilJ\4

3.298. (P)y = 1/, (nwa?B)¥R.
3.299. B = 1/,qR/NS = 0.5 T.

3.300. qz%l—}lz— In z+:, i.e. is indepen- Fig. 25

- 1g. .
dent of L. &
I b I b2
3.301. (a) I=Lte1n2; () F=%(—”2Ln9-ln7) i

3.302. (a) s = vymR/*B?, (b) Q = Y/ymit.
3.303. v:% (1 —e—*%), where = B2%/mR.

3.304. (a) In the round conductor the current flows clockwise,
there is no current in the connector; (b) in the outside conductor,
clockwise; (c) in both round conductors, clockwise; no current in
the connector, (d) in the left-hand side of the figure eight, clockwise.

3.305. I = Y, 0By (a — b)/p = 0.5 A.

3.306. &;,, = Y/;na®NwB,.

3.307. &; = 3/,wl B = 12 mV.

. .
3.308. E={ faponlr for r<a,
ymonla?/r for r>a.

3.309. I = ‘/kp,onSdI'/p = 2 mA, where p is the resistivity
of copper.

3.310. E = t/yab (n — 1)/(q + 1).
3.311. o= —-LB().
m

2y2
3.312, F, max=%ﬁ,

3.313. Q = Y/,a2%R.
3.314. T = 1/, (b® — a?) Phlp.

3.315. 1=V 4nl L/ =0.10 km.

3.316. Lz—%%f—, where p and p, are the resistivity and the
0
density of copper.

3.317. t= — L In(1—1)=1.5 s.
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3.318, =142 . 0.7 ms, where p is the resistivity, p, is the
4t lpp,

density of copper.

3.319. L,= *g;o Inn=0.26 pH/m.

3.320. L=-+2 uN2aln (1+45).
3.321. L, = poh/b = 25 nH/m.
3.322. Ly~ —l—;l Inn.
3.323. (a) I = na?B/L; (b) A = Y,n*a*B*/L.
3324. I =I,(1 +n) =2 A.
3.325. I = — 8 ____504,

Wo (ln + —2)
3.326. [ =L (14 (n—1)e-tr/L],
3.327. I= % (1 e-wmiar),

éL

3.328. 1,:7?%%1—2), 12:7?(—51-;172).
3.329. Lyp="1"1In (1+%).
3.330. L=tttV 2
3.331. (a) L, &~ Yypona?/b; (b) @, = Yspenal/b.
3.332. p,, = 2aRq/u,N.
3.333. Ly, & Yypona®/l.
3.334. I,=2012 (1 e-tRILy),

L2 .
3.335. 0= g pmy — 5 M-

3.336. W =1 ,NOI =05 J.
3.337. W = BHn%?b = 2.0 J, where H = '/, NI/nb.

(oS N2
3.338. (a) Wiyap/Wp = pbind=3.0; (b) L~ 70
3.339. W, = pr2w2a?/8n.

3.340. E = B/V eopo=3-10® V/m.
3.341. w,,/w, = gopowia®/l® = 1.1-1071%,
3.343. (a) Ltotal = QL; (b) Ltotal = L/Q.

3.344. Ly, =V LL,.

3.346. Wyp =272 I\1, cosO.

3.347. (a) jq = —i; (b) I; = q/e,ep. )

3.348. ’(I‘I)le ddisplacement dcurrentoshould be taken into account
in addition to the conduction current.

3.349. E,, = I,/eq0S = 7 V/em. .
3.350. H=H,, cos (ot +a), where Hp=5TV02 1 (eoe0)?
and o is determined from the formula tan o= g,ew/o.

=0.15 H.
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1/21"3-r for r <R,

1/21.9.1-?2/r for r > R.
Here B = ponl,0? sin ot.

3.351. ji= {

. 2 .
3.352. (8) Jo= 755 (D) Ja= —5og.
3.353. .’l)m=0, jd max = av

4ria’ *
_ glvr]
3.354. H—-—m—,

3.355. (a) If B (t), then V X E = —9B/ot 5= 0. The spatial
derivatives of the field E, however, may not be equal to zero
(V X E == 0) only in the presence of an electric field.

(b) If B (#), then V X E = —4B/dt = 0. But in the uniform
field V X E = 0.

(¢) It is assumed that E = af (f), where a is a vector which is
independent of the coordinates, f (¢) is an arbitrary funetion of time.
Then —gB/9t = V X E = 0, that is the field B does not vary with
time. Generally speaking, this contradicts the equation V X H =
= 0D/ot for in this case its left-hand side does not depend on time
whereas its right-hand side does. The only exception is the case
when f () is a linear function. In this case the uniform field E can
be time-dependent.

3.356. Let us find the divergence of the two sides of the equation
V X H = j + dD/dt. Since the divergence of a rotor is always equal

to zero, we get 0 = V.j —{——%(V-D). It remains to take into

account that V.D = p.
3.357. Let us consider the divergence of the two sides of the
first equation. Since the divergence of a rotor is always equal to

zero, V. (dB/9t) = 0 or -(%(V-B) = 0. Hence, V.B = const which

does not contradict the second equation.
3.358. V x E =-[eB].
3.359. E' = [vBL
3.360. 0 = ewB = 0.40 pC/m?. :
3.361. p= —2e0B= —0.08 nC/m?, o0=-¢emaoB=_2 pC/m?.
3.362. B fo glvil
bn 3
3.364. E" = br/r®, where r is the distance from the z’ axis.

3.365. B’=a7[2:—:], where r is the distance from the z’ axis.
’ "{—P2cos?a . , __ tena
3.367. (a) E'=E )/ ——p—=9 kV/m; tana =~

whence a = 51°% (b) B'=%:14 uT.
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BB sin o

3.368. M= =1, H
68. (a) E Ve 1.4 nV/m;
1—P2cos? a

®) B'=BY I=E9Te o9 1, a'a st

3.370. B' =BV T— (E/cB): ~ 0.15 mT.

3.371. Suppose the charge ¢ moves in the positive direction of
the z axis of the reference frame K. Let us pass into the frame K’
at whose origin of coordinates this charge is at rest (the z and z'
axes of the two frames coincide and the y and y' axes are parallel).
In the frame K’ the field of the charge has the simplest form: E' =

= ——41180 g,—ar’, with the following components in the plane z, y
. __L q ’ r__ 1 q ’
* = Tne, 75 ° E”—4ﬂeoﬁ—y'

Now let us make the reverse transition to the initial frame X. At the
moment when the charge ¢ passes through the origin of coordinates
of the frame K, the z and y projections of the vector r are related
to the =’ and y’ projections of the vector r’ as

z=rcosO=2'V1—(/c)?, y=rsinf=y’"
Besides, in accordance with the formulas that are reciprocal to
Egs. (3.6i),
E.=E:, Ey=E;/V1— (@l
Solving simultaneously all these equations, we obtain
E=Ei+Ej= & __ 1=6

ne, 8 (1— P2 sinz p)3/E °

Note that in this case (v = const) the vector E is collinear with
the vector r.

3
3.372. v=)%,ale/m =16 km/s.

al? m
3.373. tana=—4- SLp3 -
3.374. (a) z=2Ey/a; (b) w=qE,/m.

3.375. = YT TH2mCY) o0
ceE

eE
3.376. w== W.

3.377. (a) tan 0= ;EJO V1= (v/c)?, where e and m, are the charge
0
and the mass of a proton; (b) vy=uv,/V T4 (I —v¥ic?) (eEtimycd)e.
3.378. a=aresin (dB )/ 31-) = 30°,

3.379. (a) v=reB/m=100 km/s, I'=2nm/eB=6.5 ps; (b) v=

B Y B T 2nm
= ll B 2= .5 =_—_—_—————_0__= . .
¢/ VI¥ (moclreB =051 ¢, T TV 4.1 ns
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3.380. (a) p=qrB; T=moc2(V1+(qu/moc)2—1); (¢) w=
c? .

= r A (meelgrB) _
3.381. T =mnm?, 5 keV and 9 MeV respectively.

3.382. Al=2n ) 2my/eB%cosa=2.0 cm.

3.383. q/m:rgz"l%),—-

3.384. r =2 | sin (9/2)], Where p = sin a, @= e,
3.385. Ipge=ae®?, where b=-1 —1I.

3.386. V=g s M= T

3.387. (a) yn=£‘—:-'§2ﬂi: (b) ta"a=?f?°z%'

3.388. z=1tan ]/-quig y; for z« 1 this equation reduces to
y = (2mE/ql*B?) z2. A
3.389, F=mEI/qB =20 uN.

3.390. Al=22"F tan g =6 cm.
a(a--2b) B?
3.391, g/m = 2B

' i sy = — here a =
3.392. (a) = = a (ot — sin wt); y = a (1 — cos 1), W
= mE/quf )o) = gB/m. The trajectory is a cycloid (Fig. 26). The

Fig. 26.

i i i i i d at the rim
otion of the particle is the motion of a pgmtlocate '
g} a circle of radius a rolling without slipping along the z axis S,O
that its centre travels with the velocity v = E/B; (b) s = 8mE/gB?
(¢) {vx) = E/B.

3.303. V=2 (%) n .

m
2b 2m
3.304. B< ez )/ V.
. a . .
3.395. y=—2%o—tsm ot, T= 55 (sin wt— ot cos o), where

a = gE,/m. The trajectory has the form of unwinding spiral,
3.396. V = 2n%v2mrAr/e = 0.10 MV.
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3.397. (a) T =222 _ 19 MeV; (b) vppip =L 5—=20 MHz.

m nr
3.398. (a) =1 475 () s 2V 074 km,

N
Instruction. Here s ~ D) v, ~ Z V' n, where U, is the velocity of

n={
the particle after the nth passage across the accelerating gap.
N

N
Since N is large, > Vn ~ 3 Vrndn.
1 b

3.399. n = 2nvW/eBc® = 9.

3.400. © = 0,/V 1 + at, where 0, = ¢B/m, a = gBAW/nm3c:.
3.401. v = Y,rgB/m, p = r/2.

3.402, N = W/e® = 5.10° revolutions, s = 27rN = 8.10° km.
3.403. On the one hand,

dp e do
o ==

where p is the momentum of the electron, r is the radius of the orbit,
@ is the magnetic flux acting inside the orbit.

On the other hand, dp/dt can be found after differentiating the
relation p = erB for r = const. It follows from the comparison of
the expressions obtained that dB,/dt = 1/,d (B) /dt.In particular,
this condition will be satisfied if B, = t/, (B).

3.404. r,=V 2B,/3a.

3.405. dE/dr = B (r,) — 1/, (B) = 0.

3.406. AW = 2mr%B/At = 0.10 keV.

3.407. (a) W= (V 1+ (reB/mec)2—1) moe2; (b) s= WAt/reB.
4.1. (a) See Fig. 27; (b) (v,/aw)? + (z/a)? = 1 and we = —w2r.

Fig. 27.

4.2. (a) The amplitude is equal to /2, and the period is T =
= n/w, see Fig. 28a; (b) 12 = 4w’ (a — z), see Fig. 28b.

43. x = acos (of + o) = — 29 cm, v, = — 81 cm/s, where
a= Vx: + (Vxo/ )2, a=arctan (—v,o/0x,).
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4h o=V I—0)(@—2); a=V Wi o) (T — 0D,

4.5. (a) (v) = 3a/T = 0.50 m/s; (b) v) =6a/T =1.0 m/s.

.Z’/r
z
/4
)]
Fig. 28.
4.8, (a) (v,) = 231;5 aw; (b) (W] = 22 an; (¢) @) =

3n
_26=VD)
—-— 3“' .

4.7, s= { a[n+1—cos (wt—nmn/2)], n is even,

_ a[n +sin (ot —nn/2)], n is odd.
Here n is a whole number of the ratio 2ct/m.

e === = — e —
|
|
i

r__

1

|

L

!

l

L T

S
X

Fig. 29,

4.8. s = 0.6 m.
4.9. dPldz = 1/nV a® — 22
4.10. In both cases a = 7.
411. v, = 2.73a0.
4.12. 47.9 and 52.1 s—1, 1.54.
2:2 18 or 26 Hz.
14, (a) 2%a® + y?/b® = 1, clockwise; (b) w = —@?r.
415 (a) =42 (1 —2%a?); b) y=—a (1 — 22%a?). See
Fig. 29.
416, 7' =2n Vm/azUo.
417. T =4naV ma/b2.
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4.18.
4.19.

T=an_l/7’=O.2 s.
T=2xVnljgm—1)=1.1 s.

4.20. T = QVE [J/t/g_—{_—_ arcsin (a/B)].

421, 1=}/ 2 ¥ 11“‘:"1/‘1‘%—“ where 1= w/g.
4.22, T =1V 4nm/pgrz=2.5 s.

4.23. T=2nYn(1—m) mx=0.13 s.

4.24, T =21V m/(%, + %p).

4.25. T =20V m/x, where %= x,xy/(%; + %a).
4.26. o=V 2T /ml.

4.27. T =21V m/Spg (1 +cos6)=0.8 s.

4.28. T=n)20jkg=15 s.

4.29

(a) z + (g/R) z = 0, where z is the displacement of the

body relative to the centre of the Earth, R is its radius, g is the

standard

free-fall acceleration; (b) T =nV R/g = 42 min,

(c) v=VgR =19 km/s.

4.30

.Ir=2nVlijg—w|=0.38s, where g —w] =

=V g2+ w?—2gwcosp.

4.31

. T:Qn/l/ wm—w2=0.7s, 0=V »/m=10 rad/s.

4.32. k = 4n’a/gT* = 0.4.

4.33.
(b) 6 = 4.5° sin 3.5¢;
= 5.4° cos (3.5t + 1.0). Here ¢

(a) 8 = 3.0° cos 3.5¢; g |
€ 6= g5

is expressed in seconds. w0+

4.34. F=(m +m)g=x
4+ miae®* = 60 and 40 N. a5t

4.35. (2 F=mg (1+ . '
+a+:2- cos wt), see Fig. 30; g T in wr

(b) Apin = g/0? = 8 cm;

—(oV
4.36

= 2mg, T

4.37
4.38

Here
4.39

4.40.
4.41.

4.42

(€) a=
Ohig—1)g/w?=20 cm.
. (a) y = (1 — cos wt) mg/x, where ® = V x/m; (b) Tmox =

Fig. 30.

. (177;’2)2 + a (y/vg)? = 1.

. (@) y = (1 — cos at) we? (b) y= (of — sin of) ¢/ed
= Vx/m.

« Moy = mglk = 10 cm, E = m?g*/2k = 4.8 mJ.

a=(mg/®) V 1+2hu/mg, E=mgh -+ m2g%2x.

a=(mg/x) V 1+ 2hu/(m+ M)g.

. Let us write the motion equation in projections on the

x and y axes:

r = oy, y = —ox, where @ = a/m.
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Integrating these equations, with the initial conditions taken into
account, we get r = (v, /o) (1 — cos wt), ¥ = (vo/w) sin wt. Hence
(xr — vo/w)® + y* = (vo/w)% This is the equation of a circle of radius
ve/® with the centre at the point z, = vy/w, y, = 0.

4.43. Will increase V1 + 2/; (R/])? times. It is taken into
account here that the water (when in liquid phase) moves translation-
wise, and the system behaves as a mathematical pendulum.

Lah 0=1 % (142,

o me
4.45. (3) T=2nV1/3g=11s; (b) E=1/,mglaz=0.05 7.
4.46.

Om=00)/ 1+ mRGY2kGY, E="/skgh.
447, (T) = Ygnglo? + 1/, ,mi2B.
4.48. T = 4n/w.
4.49. I = mP (0} — g/D)/(0} — 0l) = 0.8 g-m2.
4.50.

o=V ([o! + T}/, +}z)-' _
451, 2=1/2V 3, Tpin=2n V gV 3.
4.52. T = n V' 2hig, Le.a = hi2.
4.53. o=V 3aw?/2l.

4.54. @y =V %/(m + I/R?).
- 2mg cos a
4.55. = l/ MR-+2mR(1tsna)
4.36. T=2nV 3(R—r)2g.
4.57. T=a) 3m/2x.

4.58.

Wy = ]/m, where p=mm,/(m,+ m,).

459, () o=V x/p=6 s-1; (b) E=Yyu?=5 ml, a=v/o=
=2 cm. Here p=mym,/(m 4+ m,).

4.60. T =2nV T'lk, where I' =I,1,/(I, 4 I,).

4.61. wy/0,=V 1+ 2mo/mc~ 1.9, where mo and mc are the

masses of oxygen and carbon atoms. ‘
4.62. =SV 2yp,/mV,, where y is the adiabatic exponent.
4.63. g=4hV nemg (n2— 1) =2.0 uC.
4.64. The induction of the field increased n? = 25 times.
4.65. r= (vo/w)sin ¢, where m:lB’VH. e
4.66. z = (1—coswt) g/w?, where o=1B/Y mL.

4.67. () a, and a,0; (b) tnz%(arctan—(-g-Jrnn), where
n=0,1, 2, ... .

468 (2) 9(0)= —Bp, ®O0) = (B — 0% (B) tn—
=-(-1- (arctan mnzgoﬁd —{—nn), where n=0, 1, 2, ...
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4.69. (a) a0=—-——lz;’| () a=

?

__{ —n/2, when :;co>0,

+ /2, when :;co<0;
=|zo| VI+(f/o)?, a=arctan(—p/o), with —n/2<a<0, if
2,>0 and n2<a<<m, if 2,<<0.

470. =0V P—1=5 s

471, () v(t) =a,V 2 +P2e~Bt; (b) v(t)=|zo| V' 1+ (Blw)Ze-Bt.

4.72. The answer depends on what is meant by the given ques-
tion. The first oscillation attenuates faster in time. But if one takes
the natural time scale, the period T, for each oscillation, the second
oscillation attenuates faster during that period.

4.73. h=nhy/V T+ ([T —n?) (h/2n)2=3.3, n' =V T+ (2n/Ag)t=
=4.3 times.

4.74. T =V (4n2+ A3 Az/g =0.70 s.

4.75. Q=an/lnn=>5-102,

4.76. s~1(1+eM2)/(1 —e~H2)=2 m,

477, Q= 1, 1/ —E2_ 1 _1.3.102

l11ln%y
4.78. T=V 3/, (4n2+2A2) R/g=0.9 s.
_ 2a nnR2\2
4.79. 0= m—Rz———( m ) .

4.80. v = 2AhI/nR°T.
4.81. v = 2RI/a*B>.

4.82. (a) T=2nV m/x=0.28s; (b) n = (z,— A)/4A = 3.5 oscilla-
tions, here A ==Fkmg/x.

4.83. zr= Fofm

wi—o
4.84, The motiosn equations and their solutions:
t< T, z -+ wir = Fim, z = (1 — cos wt) F/E,
t}r,i-}—wﬁx:O, z = a cos [0y (t — 1) +al,
where ©; = k/m, a and o are arbitrary constants. From the conti-
nuity of z and z at the moment ¢ = 1 we find the sought amplitude:

a = (2F/k){sin (0yt/2)].

{cos wot — cos wt).

_ -1—(3./211)2 F; _ AFAL ﬂ
4.85, Wres = W—Al—’ Ores = dnmg ( A2 )'

4.86. 0,0 =) (@2 F02)/2=51-102 g-1,
4.87. (3) 0=V 004 (b) B=|w,—a,/2V 3,

W=
——-V(Di(l)z—((l)z—(ﬂi)z/iQ.
4.88. n = (1 + A*4n?) a/h = 2.1.
4.89. A = naF,sin @.
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4w? 2
4.90. () O=1, 1/(3-,_—;’2—)‘,3%?2— 1=2.2; (b) 4=nma? (@i—
—0?) tan =6 mJ. Here w,=) »/m.

F
491 (a) (Py= G By (B) © = o, (Pmax=Fi/4fim.

4. (P)max'—(P) 100
92. . APYmax n2—1 %.

_ V (cos o+ 202 @/ N ) —
4.43. (a) A= —nppNpsine; (b) Q= 5 in
4.94. 0 =) ne?/egm=1.65-101% s-1,
4.95. V® 4+ IPL/IC = V. _
4.96. (a) I=1I,sin w,t, where I,,=V,VC/L, w,= 1/V IC;

(b) 8s=Vn/V2.
497. A = (2 — 1) W.

4.98. (a) T=2nVL(C{+C,)=0.7 ms;

M I, —VV(CA+C2>/L 8 A.
4.99. V = 1/, (1 &= cos wt) V,, where the plus sign refers to
the left-hand capacitor, and the minus sign to the right-hand one;

2/LC.
4.100. I =-3- cos (t/V IC).
4101, (a) t,= ;:)n; (b) tn=-é-[arctan(——2-)+ nn]. Here
n=0, 1, 2,

4.102. VO/V,,,_1/1—R’C.
4.103. Vo=1I,V L/Ce-Btsin (ot +a) with tana=w/f; V¢ (0)=

L
= nV oz
4-104. WL/WC = .L/C.R2 = 5.
4.105. L = L, + L,, R = R, + R,.

4.106. t =2 Inn =05s.
v

4L

1
4.107- n=ﬁ FR—Z—11='16.
Wy — O
4.108. o =1— —_"EzSQ = 0.5%.-

Y 1+1120)
4.109. (a) Wy = 1/282 (L + CRY)/(r+ R?*=2.0m); bYW =
= W tR/L = 0.10 mJ

7~ Q —_—
4.110. t = Srive ln'q—l.O ms.

1 1 1 4R2C
ait. @) o=V - ® 0==) EE 1.
When solving the problem, it should be taken mto account that
dq/dt = I — I, where g is the charge of the capacitor, I is the cur-
rent in the 0011 winding, I’ is the leakage current (I’ = V/R).
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4112, Q= 2"(‘;’) ‘ £ 1.0.10e

4.113. (P) = R <12> = Y,RI% = 20 mW.
4A14. (P) = Y,RCV%/L = 5 mW.

1 1 . 1 T
41415, o= ‘/TC__W ; R <3 I/-_C‘
1 1 1 1 1 1
4.116. L—I'+L—2=T and -E;'+—R:————R— B
4117, I = -Izl—"te-f/m; 1= Imaxz% ]/TC at the moment
t,=V LC.
4.118. I = VE:——_S_TTE [cos (wt — @)—cos @-e~tR/L] tan ¢ = wL/R.
4119, I = ———=2—— [cos (ot — @) —cos ¢-e~"RC],  tan @ =
VR /(0
—— Ve ==V
SEC - R 7 Ve
4.120. The current lags behind / {
the voltage by phase angle ¢, defined /ii’“_?‘_ _1'__/’1’3
. _ poniva v, of current | of current
by the equation tan @= “anp - (ajg v

4.121. The current is ahead of
the voltage by the phase angle v
¢=060° defined by the equation

tan o=V (V/BI)%*—1.

4.122. (a) V'=Vy+V,,cos(ot— a), where Vm=V,/V 1+ (oRC)Z,
a=arctan (0RC); (b) RC=V —1/0=22 ms.
4.123. See Fig. 31.
4124, (@) Im=Vn/VREF (0L —1/0C)?=4.5 A; (b) tang=
ml’-——ﬁii“—)g, = —60° (the current is ahead of the voltage);
) Vo=1I,/0C=0.65 kV, V=1, R2+w?L2=0.50 kV.

4.425. (a) 0=V w:—2p2; (b) m—w"’/l/or 2p2, where 2=
=1/LC, p= R/2L.

4.126. For C=— =28 uF; Vo= Vo V 1+ (0L/R)?=0.54 kV;
Ve=VmoL/R=0.51 kV.

4427, I =TI cos (0t +@), where In=-22) 11 (0RC)? and
tanp= 0 RC.

-———T———
4.128. w(,:l/c—(m;—::‘i;j) ’
4.429. Q=Vn2—1/4.

71
4.130. Q= 1/" o=t 1
Cpy R
4.131. (2) wo=V @rop; (b) Q:l/%_f'
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4.133. I/ I =V 14 (Q2%41/4) (n2 — 1)2/n2, 2.2and 19 respectively. 4.156. See Fig. 33.

534, t—'/ynt,. o P
4435, () I= 2T, ~ 1150, (b) I =11, 1.411,. | 41457, Ag= —ZIn(t —m) = 37 =0.3 rad.
V3 14 " 4458, r= (ar; + a,ry)/(a; + a,).

R P
4.436. v= o7 Vn—1=2 kHz. 4.159. (a) y= 20D 608 1t (b) v, — 2“?"0 =15 cm/s.

3 r—ro
4.137. Tm}ags klehmd the voltage by the phase angle 4.160. (a) See Fig. 34a. The particles of the medium at the points
@=arccos ' 1 — (X /Z)? =~ 37°, P— VZZ =0.16 kW, lying on the solid straight lines (y =z +nh, n =0, 1, 2, .. )
4.138. For R=wL-—-r=0.20 kQ, Pmax:—zm—LzO.M kW.
4.139. Increased by V'n—1 = 30%. ' W~
4.140. For Q> 1 the ratio is Aw/w,~ i)/ n—1/Q=0.5%. _ e -
[ Al |~ ."'.,v// ."-.. /,
jk _ﬁﬂs_ﬂf; h __'.41"" of \\ 4 \\ /, 5
p \ voltages volfages 0—‘@’ By e
\ i3 / /7t
I, =7 Tir Fig. 33.
(@) (8) !
) oscillate with maximum amplitude, those on the dotted lines do
Fig. 32. . not oscillate at all.
) {b) See Fig. 34b. The particles of the medium at the points lying
4141, P, = Y/, (V2 — VI — V3)/R = 30 W. on the straight lines y =z 4+ nh, y=24+ (n = 1/2) A and y =
4142, P, = ‘/2 (I* — 12 IR =25 W. = x *+ (n &= 1/4) A oscillate respectively along those lines, at
4.143. Z = R/V1+(o)CR)2~4O Q. ‘
4.144. See Fig. 32. : g
1 R?
41445, (a) ©pes= T — Iz = 3+10* rad/s; (b) I—VRC/L: 2
=3 mA, L=VVTL=10 A, Ic=v} S—(E)V =104
4.146. tan @ = BTN ol A
R oiL?
4.147. 2= l/(mCR)2+(1—co2€L)2'

w2L,L,I% oL ' V4
4.149. <F*>_2(m_2|_:2£g) az“ .
2l

4450, = — =
4.151. A(p:ﬂ | (xy —22) €08 &+ (Y4 — Y3) €OS B 4 (3 — 25) cos y |. 1

ey e, . right angles to them, or move along the circles (heren = 0, 1, 2,...).
4.152. k=0 ( +— 7 T o5 ) " At all other points the particles move along the ellipses.
4.153. §—acos[(1——V/v) cot—kx }, where v=ow/k. ¢ 4.161. (w) = /3w,
4.1455. (a) a/h =5.1410-% (b) v, =11 cm/s, 3.2.10-%; % _ N 1 _
(c) (9E/02)m = 3.2:104, (9E/3t),, = v (9E/3%)p, where v — 0.34 km/s 4162, (©) =2a221, (1 ) =20 kW

is the velocity of the wave.
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4.163. (®y=P/V 1+ (2R/h)2=0.07 W.
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4.164. Fee Fig. 35, for (a) and (b); see Fig. 36 for (c).
4.165. (a) wp = 1/,pa’e® sin® kx-cos? wt; (b)) wy = Y/ypate? X
X cos? kx-sin® wt. See Fig. 37.

4.166. amax = 5 mm; to the third overtone.

712(1+”11)
4.167. m 1+,
4.168. W111 increase n=w=2 times.

1+ AUl
w

¥z —7/4\
// \
dE / \
7z

z S

t=T/4 A/2 z

Fig. 36. Fig. 37.

4.169. v = 2lv = 0.34 km/s.
4.170. (a) vo= 7 (2n+1), six oscillations; (b) vp=—- (R +1),
also six oscillations. Here n=0, 1, 2,

4171 v _-2n2';"1 f =3.8(2rn+1) kHz; four oscillations with

frequencies 26.6, 34.2, 41.8, and 49.4 kHz.
4.172. (a) Tmax=‘/,,mm2a$nax; (b) (T)=1/gmw2amqx-
4.1473. W = 1/, nSpw’a®/k.
4174, v = 2voou/(V® — u?) &~ 2vau/v = 1.0 Haz.
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4175, u:“—:"(wﬂv/vo)z_i)z;—v”o:o.s m/s.
4476, 0= (V I+ (@v/v)2—1)=34 s-1.

4177, v=v,/V 1+ 2wt/v =1.35 kHz.

4.178. (a) v="o/(1 —n?) =5 kHz; (b) r=1V 1+ n2=0.32 km.

4.179. Decreases by 2u/(v + u) = 2.0%.

4.180. v = 2vou/(v + u) = 0.60 Hz.

4181 y= 2 6400 s

—

4.182. (a) L' =L — 20yzloge = 50dB; (b) z = 0.30 km.

4.183. (a) L = L, + 20 log (ro/r) = 36 dB; (b) r> 0.63 km.

4484 B = Inlrg /r)/ L1 3 (i~ /0] = 0.12 51,

4.185. (a) Let us consider the motion of a plane element of the
medium of thickness dx and unit area of cross-section. In accordance

with Newton’s second law p d:cE = —dp, where dp is the pressure

increment over the length dz. Recalling the wave equation §.=
= v® (9°E/92®), we can write the foregoing equation as

a2
pUZ e dz = —dp.
Integrating this equation, we get
Ap= —pvz—g% -+-const.

In the absence of a deformation (a wave) the surplus pressure is
Ap = 0. Hence, const = 0.
4.186. (®) = nR? (Ap)i/2pvAh = 11 mW.
4.187. (a) (Ap)m = V pvP2nr® = 5 Pa, (AP)m/p = 510-5;
(b) a = (Ap)m/anpv 3pm, a/A = 5-10-8.
4.188. P = 4qrie?vr] . 10L = 1.4 W, where L is expressed
in bels.

4.189. AL=(1/YVe—1)c/v=—50 m.
4.190. t=2(l/ei—1/ez) leln (e4/e,).
4A91. jljg = o0/2nvee,=2..

4.192, H=% Vso/uo [KE.,] cos (ckt), where ¢ is the velocity of

the wave in vacuum.

4.193. (a) H=e,E,, V &o/u, cos kz = —0.30e,;
(b) H=e,E,, V eo/pio cos (ckty — k) =0.18e;. Here e, is the unit vector
of the 2z axis, H is expressed in A/m.

4194, ¢, = 2mviI’E,/c = 13 mV.

4.196. (S) = 1 ke cEL 0.
4497, (8) jue = 7V 2evE, = 0.20 mA/mz (b)) (S) =
= 1/,e,cE} = 3.3 pW/m?.
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4.198. Since t > T, where T is the period of oscillations, W =
= i/21/ Eo/MoEZmﬂRz = 5 kJ.

4.199. B = By, sin kz-sin ot, where B,, | E,,, with B,, = E,/c.
4.200. S, = !/,e4cE7, sin 2kz-sin 20t, (S,) = 0.

4.200. W,/W, = tgequow?R? = 5.0.10-15,

4.202. W, /W, = Ygeono02R? = 5.0-10-13,

4.204. ®g = I*R.

4.205. § =12} mf2eU /4n2eyre.

4.207. To the left.

4.208. ® = V1.

4.209. (@) = 1,V I, cos o.

4.211. The electric dipole moment of the system is p = er; =
= (e/m) Mrc, where M is the mass of the system, r¢ is the radius

vector of its centre of inertia. Since the radiation power Poclv.2 oc

ocrg, and in our case 1o = 0, P = 0 too.
1 e2a204

4.212. (Py= T, 32c3 :25.10-15 w.
1 ge 2
4.213. P= e 35 (mR2) .

~ 1 nedq?
4.214. AI’V ~ —(mo)—am.

4.215. AW/T =1/,e3B/e,c3m2=2-10718, _
4.216. T=Tye~*, where a=1/,6"B2/me,c3ms. After to=7:-=
_{ 2.9 s for the electron,

1.6-10%® s=0.5.103 years for the proton.

4.217. §,/S, = tan? (wl/c) = 3.

4.218. (a) Suppose that ¢ is the moment of time when the particle
is at a definite point z, y of the circle, and ¢’ is the moment when
the information about that reaches the point P. Denoting the observed
values of the y coordinate at the point P by y’ (see Fig. 4.40), we
shall write

R 1)) 20y @)=y ).
The sought acceleration is found by means of the double differen-
tiation of y’ with respect to ¢':

dy’_d_y_ﬂf_i dty _ di d_ dy’)_f_ vie—y/R
dt” T dt” T dt dt ar': T 4y dt ( dt’ )] T R (1—vy/cR)3

where the following relations are taken into account: z = R sin ot,
Yy = R cos of, and o = v/R.

(b) Energy flow density of electromagnetic radiation S is pro-
portional to the square of the y projection of the observed accelera-
tion of the particle. Consequently, S,/S, = (1 + viey /(1 — vic)s,

4.219. (P) = &/,nr2§,.

4.220. (w) = 3/gPy/nr2e.

4.221. P = Y/sp*w®/me,ct.
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4.222. (P)/(S) = (e*/m)*ud(6m.
pg (e2/m)? ot
4.223. (P)/(S)= T GI— T

4.224. R = 3P/16ncypM; ~ 0.6 pm.

5.1. (a) 3 and 9 mW; (b) @ =1, (Vy + V,) P, /4 = 1.6 Im,
where A = 1.6 mW/lm, V; and V, are the values of relative spectral
response of an eye for the given wavelengths.

5.2. E% =V pno/e, AD/2n2Vy, hence E, =1.1Vim, H, =
= 3.0 mA/m. Here A = 1.6 mW/lm, V, is the relative spectral
response of an eye for the given wavelength.

1—VI=(RI® I

5.3. (a) (E)zi/on; (b) (E>= '1—-R/l F=50 lx-

5.4. M = 2/,nL,.

. (a) ® = nLAS sin®0; (b) M = nL.

~ R, E = LS/4R®> = 40 Ix.

= I /cos® 6, ® = nl,R*h?* = 3-10% Im.

. Epg. = (9/161) 3) pES/R?* = 0.21 1x, "at the distance

from the ceiling.

. E = =nlL.

= nlL.

= Eo (1 + h¥R? = 7-10° Im/m?
A2. E, = nLR*h* = 25 Ix.

5.13. ¢’ = e — 2(en) n. ‘

5.14. Suppose n,, n,, n; are the unit vectors of the nqrmals to
the planes of the given mirrors, and e, e,, e,, e; are the unit vectors
of the incident ray and the rays reflected from the ﬁrst, second,
and the third mirror. Then (see the answer to the foregoing problem):

e, = €y — 2 (eony) Ny, €, =e;—2 (eNy) Ny, €3 = €, — 2 (eyn3) ng.

Summing termwise the left-hand and right-hand sides of these
expressions, it can be readily shown that e; = —e,-

5.15. 8, = arctan n = 53°.

5.16. n/n, =1/ 2—1=1.25.
5.17. z=[1—V (1 —sin26)/(n? —sin?0)] dsin = 3.1 cm.
5.18. b’ = (hn? cos® 0)/(n?* — sin? 8)%2.
5.21. 6 = 83°. 3
5.22. From 37 to 38°.
5.23. o = 8.7°
2 sin (0/2)

5.2, o= An = 0.44°.
5.27. (a) f=1p/(1 — B% =10 cm; (b) f = IBsfs/(Br — Br) =

= 2.5 cm. PG » 0.0.10° od
5.28. I' =p — 5)2 = 2.0. cd. o
5.29. SupposeOS is a point source of light an‘d S’ its image

(Fig. 38). According to Fermat’s principle the optical paths of all

rays originating at S and converging at S’ are equal. Let us draw
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5.9
5.1
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circles with the centres at S and S’ and radii SO and S'M. Conse-
quently, the optical paths (DM) and (OB) must be equal:

n-DM = n'-0B. (»)

, in the case of paraxial rays DM ~ A0 + OC, where
ngivil;/(—%) and OC =~ W'*/2R. Besides, OB = OC — BC ~
~ h'?/2R — h'%/2s'. Substituting these expressions into ’(.) and
taking into account that A’ = h, we obtain n'/s’ — n/s = (n'—n)/R.

S M
=
lt ~N
"I RN
IARY K A N
\f( \\\ &
Ky ! S
A O8 ¢
-5 s’ -
Fig. 38.

nf CEG VT
5.30. .’L‘=n+1(1—|/1—(—n—_———1)f2), rmax—f]/(n 1)/(n+'1)

5.31. 6.3 cm.

5.32. (a) p =1 —d (n—1)/nR = —0.20; (b) E=anDL/4d*=
= 42 Ix.

5.33. (a)® = Dy (n — ng)/(n — 1) = 2.0D,f = —f = n/D =
=85cm; (b) ® =1,0,2n —ny—1)/(n —1)=6.7D, f=
=1/® ~ 15 cm. f' = ny/® =~ 20 cm. Here n and r, are the refrac-
tive indices of glass and water.

5.35. Az =~ AlP/(l — f)? = 0.5 mm.

5.36. (a) f = [I* — (A})*I/4l = 20 cm;
®) f =1Vl + Vn) =20 cm.

5.37. h = VWA = 3.0 mm.

5.38. E = (1 — a) nLD?%*4f* = 15 Ix. . \

5.39. (a) Is independent of D; (b) is proportional to D -

5.40. f = nyR/2(n, — n,) = 35 cm, where r, is refractive index
of water.

5.41. f = R/2(2n — 1) = 10 cm. .

5.42. (a) To the right of the last lens at the distance 3.3 cm from
it; b) I = 17 cm. .

5.43. (a) 50 and 5 cm; (b) by a distance of 0.5 cm.

5.44. T = D/d.

5.45. P = '/ n = 0.6".

5.46. I''=(T'+1) non(:_%i)—l = 3.1, where n, is the refractive

index of water.
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9.47. I < D/dy = 20.

5.48. T' = 60.

5.49. (a) T = 2aly/dy = 15, where [, is the distance of the best
vision (25 cm); (b) ' < 2al,/d,.

5.50. The principal planes coincide with the centre of the lens.
The focal lengths in air and water: f = —1/® = —11 cm, f =
= ny/® = 415 cm. Here ® = (2n — ny, — 1)/R, where n and n,
are the refractive indices of glass and water. The nodal points coincide
and are located in water at the distance z = f' + f = 3.7 cm from
the lens.

3.51. See Fig. 39.

95.94. (a) The optical power of the system is ® = @, + o, —
— d0,®, = + 4 D, the focal length is 25 cm. Both principal planes

n goH g
AN N O S S S O |
il I RN
@ (4) ()

Fig. 39.

are located in front of the converging lens: the front one at a distance
of 10 cm from the converging lens, and the rear one at a distance of
10 cm from the diverging lens (z = d®,/® and ' = — d®,/D);
(b) d = 5 cm; about 4/3.

3.95. The optical power of the given lens is @ = O, + O, —
— (d/n) ©10,, z = dD,/n® = 5.0 cm, z' = —d0y/nd® = 2.5 cm,
iLe. both principal planes are located outside the lens from the side
of its convex surface.

5.96. f = __hf The lens should be positioned in the front
Hit+fa—d

principal plane of the system, i.e. at a distance of z —
= f,d/(fy + fy — d) from the first lens.

9.37. ® = 20’ — 2®"2l/n, = 3.0 D, where @' = (2n—ny—1)/R,
n and n, are the refractive indices of glass and water.

3.58. (a) d = nAR/(n — 1) = 4.5 cm; (b) d = 3.0 cm.

5.59. (a) @ = d (n —1)2/nR? > 0, the principal planes are locat-
ed on the side of the convex surface at a distance of d from each
other, with the front principal plane being removed from the convex
surface of the lens by a distance of R/(n — 1); (b) ® = (1/R,—1/R}) x
X (n — 1)/n << 0; both principal planes pass through the common
curvature centre of the surfaces of the lens.

9.60. d = {/,n (R, + R,)/(n —4) = 9.0cm, I = RJ/R, = 5.0.

5.61. ® = 2(n® — 1)/n?R = 37 D.

5.63. p =3.-10" m; [Vn|= 1.6-10-7 m-.,

5.65. 1.9a.
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5.66. Let us represent the kth oscillation in the complex form
£, = aeilot+(a-1)9] = gheiot

where ai = aei®-19 is the complex amplitude. Then the complex
amplitude of the resulting oscillation is

N
A*= D) aeih-1D0 =g [{ 4 el® ;o290 feilN-Do] =

h=1
= a (e'®N —1)/(el®—1).

Multiplying A* by the complex conjugate value and extracting
the square root, we obtain the real amplitude

. f—cos Np sin(Ng/2)
A=a 1—cos ¢ =a sin (9/2) °

5.67. (a) cos 8 = (k — @/2n) Md, k=0, 1, 2, ...;.
b)e=mn/2, d/h=k+1/4, k=01, 2, ...

5.68. Ap = 2n [k — (d/M) sin (0t + «)], where k=0, A1,

+2, ...
5.69. A = 2AzAR/l (n — 1) = 0.6 pm.

5.71. (a) Az = A (b + r)/20r = 1.1 mm, 9 maxima; (b) the
shift is 6z = (b/r) 6/ = 13 mm; (c) the fringe pattern is still sharp
when 8z < Az/2, hence 8,4, = (1 + r/b)M4a = 43 pm.

3.72. A = 2aAz = 0.64 pm.

5.73. (a) Az = M/a = 0.15 mm, 13 maxima; (b) the fringes
are still sufficiently sharp when 6x < Axz/2, where 6z is the shift
of the fringes from the extreme elements of the slit, hence, 6,5, =
= Af?*/2ab = 37 pm.

5.74. A = 2a O(n — 1) Az/(a + b) = 0.6 pm.

5.75. Az =~ M20 (n — n’) = 0.20 mm.

5.76. The fringes are displaced toward the covered slit over the
distance Az = hl (n — 1)/d = 2.0 mm.

5.77. n’ = n + NMl = 1.000377. i L

5.78. (a) Let E, E", and E’’ be the electric field vectors in the incident,
reflected and transmitted waves. Select the x-, y-axes at the interface so that
they coincide in direction with E and H in the incident wave.

The continuity of the tangential components across the interface

yields

E+E =E"

The minus sign before H appears because H” |1 H. _
Rewrite the second equation taking into account that HoenE Solving
the obtained and the first equation find:

E"’ = 2En/(n| + ny.
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Hence, we see that E** and E are collinear, that is. cophasal.
O E" = E@n, — n,)/(n, + ny),

that is at n, > n, and E’ |1 E the phase abruptly changes by = at the inter-
face. If n, < n, the phase jump does not occur.

5.79. d=1/,A (1 4-2k) /V n2 —sin26,=0.14(1 + 2k) pm, where
kE=0,1, 2, ...
5.80. dpmin=0.65 pm.

5.81. d=1/A (1+2k)/V n, where k=0, 1, 2, .
n?—sin2 0

5-82- d=7\_51n—29:6_9_'

83. ) A d(rt—ri)

5.83. A pma— -

5.84. Ag—=— o5t
20,V nZ—sin? 0,

5.85. (a) ©® = 1,AM/nAz = 3'; (b) AMM =~ Az/l = 0.014.

5.86. Ar ~ Y/,AR/r.

587. =V r2—2RAL=1.5 mm,

5.88. r=Vr*+ (k—1/2) AR =3.8 mm, where k=6.

5.89. A =1/, (d; — d})/R (ky — k,) = 0.50 um, where %k, and
ko are the numbers of the dark rings.

3.90. ® =2(n — 1)(2k — 1)A/d* = 2.4 D, where k is the
number of the bright ring.

5.91. (8) r=V 2kA(n—1)/®=3.5 mm, where k=10; (b) r' =
=r/l/n_0=3.0 mm, where n, is the refractive index of water.

5.92. r=V1, A +2k)AR/n,—=1.3 mm, where k=25.

5.93. kpin = Yohy/(Ay — Ay) = 140.

5.94. The transition from one sharp pattern to another occurs
if the following condition is met:

(k + 1) Ay = KAy,

where k is a certain integer. The corresponding displacement Ah
of the mirror is determined from the equation 2Ak = kA,. From these
two equations we get

Mby A2

Ah=3 (Aa—Ay)  2AR

5.95. (a) The condition for maxima: 2d cos 8 = kA; hence, the
order of interference k diminishes as the angle 0, i.e. the radius of
the rings, increases (see Fig. 5.18). (b) Differenting both sides of
the foregoing equation and taking into account that on transition
from one maximum to another the value of k changes by unity, we
obtain 668 = 1/,A/d sin 0; this shows that the angular width of the
fringes decreases with an increase of the angle 0, i.e. with a decrease
in the order of interference.

=15 pm.

=0.3 mm.
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5.96.(a) kpor = 2d/A = 1.0-10%, (b) AA = Mk = A*/2d = 5 pm.

oo

5.97. Io= -2 5 Iy rdr.

0
ar*/(kha — r*) = 2.0 m.
(r: — r?) (@ + b)/2ab = 0.60 pm.
0 IF' =4I, I =2y b) I =1,

5401, (a) I = 0; (b) I =~ I/2.

51402. (a) I, = %51y, I, =11y I3=115lo, I, =1, I~
~ (1 — @2n),;, (b)I; =~ B/ely, Te = 1y I; = %61, I3=
= I I =~ (1 + @/2n)? I,. Here ¢ is the angle covered by the
screen.

5403. (YA =A(k+ 3/8)/(n — 1) =1.2 (k 4 3/8) pm; (b)h =
=1.2(k + 7/8) pm, (¢) h = 1.2k or 1.2 (k -+ 3/4) um. Here k =
=0,1,2, ...

5.104. h = A (k + 3/4)/(n — 1), where k=0, 1, 2, ...,
(b) Imax ~ 8IO

5.105. hpjp, = M (k + 5/8)/(n — 1) = 2.5 pm, where £k = 2.

5.406. r= )/ kAfb/(b—f) =0.90 V'k mm, where k=1, 3, 5, ...

5.107. b = b/Mm? = 1.0 m.

5.108. (a) y' =ybla = 9 mm; (b) A, = abh/D (a + b) =
= 0.10 mm.

5.109. f=abl/(a + b) = 0.6 m. This value corresponds to the
principal focal point, apart from which there are other points as
well.

5.1410. (a) h =0.60 (2k + 1) pm; (b) A = 0.30 (2k + 1) pm.
Here k. =0, 1, 2, ...

5411, (&) Tmox/Tmin = 1.7, (b)) A = 2 (A2)*/b(vy, — 1n)? =
= (.7 pm, where v, and v, are the corresponding values of the para-
meter along Cornu’s spiral.

5412, I onir/Toage. = 2.6.

5.413. A = (AR)?/2b (v, — v4)? = 0.55 pm, where v, and v, are
the corresponding values of the parameter along Cornu’s spiral.

5.414. h ~ A (k + 3/4)/(n — 1), where £k =0, 1, 2, . ..

5415, I,/I, =~ 1.9.

5.116. I ~ 2.8I,.

517, I, : I, I, ~1:4:7.

5A18. I =~ [,.

5.419. Iy o» (sin? a)/a?, where o= (xb/A)sin 6; b sin 6 = kA,
k=123 ...

5.120. The condition for a maximum leads to the transcendental
equation tan o = «, where a = (/M) sin 8. The solution of this
equation (by means of plotting or selection) provides the following
root values: o, = 1.43n, o, = 2.46x, a.; = 3.47n. Hence b sin 6, =
= 1.43\, bsin 0, = 2.46A, bsin 68, = 3.47A.

5.121. b (sin 6 — sin 8y) = kA; for k = 41 and k = —1 the
angles 0 are equal to 33° and 27° respectively.
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5.98. b =
5.99. ) =
5.100. (a)

5.422. (a) A8 = arcsin (nsin 8) — 6 = 7.9% (b) from the con-
dition b (sin®;, — nsin ) = +A we obtain A6 =0, —0_, =
= 7.3

5.423. A ~ (@ — o) d/2k = 0.6 pm.

5.425. 55°.

5.126. d = 2.8 pm,

5.427. A=(dsinA8)/V 5—4cosAB=0.54 pm.

5.128. (a) 45° (b)-64°.

5.129. z=2R/(n—1)V (d/2)2—1 =8 cm.

5.130. From the condition d [n sin 8 — sin (8 4 6,)] = kA we
obtain 8, = —18.5°, 04, = 0°% kpe. = +6, 04 = +78.5°. See
Fig. 40.

5431, hy = A (E — 1/2)/(n — 1), where k=1, 2, ...,
a sin 0, = A/2.

5.132. v = Mf/Az = 1.5 km/s.

5.133. Each star produces its own diffraction pattern in the
objective’s focal plane, with their zeroth maxima being separated

B L\M; =7
k=0
Fig. 40. Fig. 41.

by an angle ¢ (Fig. 41). As the distance d decreases the angle 6 be-
tween the neighbouring maxima in each diffraction pattern increases,
and when 6 becomes equal to 2y, the first deterioration of visi-
bility occurs: the maxima of one system of fringes coincide with the
minima of the other system. Thus, from the condition 6 = 2¢ and
the formula sin 8 = A/d we obtain Y = A/2d ~ 0.06".

5.134. (a) D="Fk/dV 1— (kA/d)?=6.5 ang. min/nm, where k= 2;

(b) D=k/dV 1= (kh/d—sinBy)2=13 ang. min/nm, where k=4.
5.135. d6/d\ = (tan 6)/A.

5.136. A6 =2)/NdV 1 — (kMd)2=11".

5.139. 0 = 46°.

5.140. (a) In the fourth order; (b) 6Ap,;, =~ A%/l = 7 pm.

5.141. (a) d = 0.05 mm; (b) ! = 6 cm.

5.142. (a) 6 and 12 um: (b) not in the first order, yes in the se-
cond order.
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5.143. According to Rayleigh's criterion the maximum of the
line of wavelength A must coincide with the first minimum of the
line of wavelength A 4 8A. Let us write both conditions for the least
deviation angle in terms of the optical path differences for the
extreme rays (see Fig. 5.28):

bn — (DC 4+ CE) =0, b(n 4 6n) — (DC + CE) = A 4 OA.
Hence, b6n ~ A. What follows is obvious.

5.144. (a) A/O8A = 2bB/A%;, 1.2.10* and 0.35-10* (b) 1.0 cm.

5.145. About 20 cm.

5.146. R = 7-10%, Aynm, =~ 4 cm.

5.147. About 50 m.

5.148. Suppose A} and Ay’ are the minimum angular separations
resolved by the telescope’s objective and the eye respectively
(Ap = 1.220/D, Ay’ = 1.22\/d,). Then the sought magnification
of the telescope is I'y,;, = AY'/Ay = D/d, = 13.

5.149. dpin = 0.64A/sin ¢ = 1.4 pm.

5.150. Suppose d,i, is the minimum separation resolved by the
microscope’s objective, Ay is the angle subtended by the eye at
the object over the distance of the best visibility I, (25 em), and
Av’ is the minimum angular separation resolved by the eye (A}’ =
= 1.22)\/d;). Then the sought magnification of the microscope is
Frin = AY'/AY = 2 (l/d,) sin o = 30.

5.151. 26, 60, 84, 107 and 134°.

5.452. @ = 0.28 nm, b = 0.41 nm.

5.153. Suppose @, P, and y are the angles between the direction
to the diffraction maximum and the directions of the array along the
periods a, b, and ¢ respectively. Then the values of these angles can
be found from the following conditions: a (1 — cos @) = kA,
b cos p = k,A, and ¢ cos y = kjh. Recalling that cos?a 4 cos?p +
+ cos’y = 1, we obtain

A — 2kifa
" (k1/a)® 4 (kq/b)? 4 (kglc)?

g —

5.154. x=% ]/-% sin @ = 244 pm, where k=2, m is the mass
of a NaCl molecule. ,

5.155. d:z—si{l(ml/kf—i—k:—%ikzcos (@2) =0.28 pm, where
ki and k, are the orders of reflection.

5.156. r = ltan 2a = 3.5 cm, where o is the glancing angle
found from the condition 2d sin o = KA.

5.157. I,/4.

5.158. (a) Iy (b) 21,

5.159. £ = n®y/0 = 0.6 mJ.

5.160. 1 = /5 (cos @)2N-1 _ (.12,

5161, I,/ = __E_(P ~ 60.

T3 cosd

5.162. 01 /Ing; = PI(1 — P) = 0.3.

e R s 77

e

2
b
4
b
i

5163. P = (n — 1)/(1 — 7 cos 2¢) = 0.8,

5.164. (a) Let us represent the natural light as a sum of two mutual-
ly perpendicular components with intensities I,. Suppose that each
polarizer transmits in its plane the fraction «, of the lightwith
oscillation plane parallel to the polarizer's plane, and the fraction
@, with oscillation plane perpendicular to the polarizer’s plane.
The intensity of light transmitted through the system of two pola-
rizers is then equal to

Iy = oily + a3l
when their planes are parallel, and to
I, = aqyoely + a0l
when their planes are perpendicular; according to the condition,
i, =n

On the other hand, the degree of polarization produced separately

by each polarizer is

Py = (ay — ay)/(ay + ay).
Eliminating &, and a, from these equations, we get
Py=V (m—1)/(n+ 1) =0.905.

(b) P=}1—1/m2=0.995.
5.165. The relative intensity variations of both beams in the
cases 4 and B are

(Al 4 = & cot (¢/2)-8¢, (AI/l)g = 4 tan (¢/2)-8¢.
Hence
n = (AIID) (AIIT) 5 = cot? (¢/2), ¢ = 11.5°.

5.166. 90°.
5.467. (a) p = !, (n? — 1)%/(n? + 1)? = 0.074;

1 2)2—4n? . .
(b) P:p/(i—p)z—((-f_—t%z));_*_T:z:O.O%. Here n is the refractive
index of glass.

5.168. I = I, (1 — p)/n = 0.7241,, where n is the refractive
index of water.

5.169. p = [(n* — 1)/(n® + 1)] sin’p = 0.038, where n is the
refractive index of water.

5470, Py=Py=1, P,=12-—0.087, Py= 0020 047,

5.171. (a) In this case the coefficient of reflection from each
surface of the plate is equal to p = (n? — 1)?/(n* + 1), and therefore
I, =1,(1 — p)* = 161 n*/(1 + n?%? = 0.725/;
b P_i—-(l-—p')z__ (14n2)8—16nt
(b) TA4(A—p)? T (I+nH)it1bns T
ient of reflection for the component of light whose electric vector
oscillates at right angles to the incidence plane.

5.172. (a) P = (1 — a4M)/(1 + aiV), where a = 2n/(1 + n?),
n is the refractive index of glass; (b) 0.16, 0.31, 0.67, and 0.92 re-
spectively.

0.16, where p’ is the coeffic-
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5.173. (a) p = (n — 1)*/(n + 1) = 0.040; (b) AD/D =1 —
— (4 — p)2¥ = 0.34, where N is the number of lenses.
5.175. (a) 0.83; (b) 0.044.

(o) (b) (c)
e ¢ o € e o

Fig. 42.

5.176. See Fig. 42, where o and e are the ordinary and extraor-
dinary rays.

5.177. § ~ 11°.

5.178. For the right-handed system of coordinates:

(1) circular anticlockwise polarization, when observed toward
the incoming wave;

(2) elliptical clockwise polarization, when observed toward the
incoming wave; the major axis of the ellipse coincides with the
straight line y = z;

(3) plane polarization, along the straight line y = —z.

5.179. (a) 0.490 mm; (b) 0.475 mm.

9.180. A = 4dAn/(2k + 1); 0.58, 0.55 and 0.51 um respectively
at & = 15, 16 and 17.

5.181. Four.

5.182. 0.69 and 0.43 pm.

5.183. d = (k — 1/2) A,//An = 0.25 mm, where k = 4.

9.184. An = A/®Az = 0.009.

9.185. Let us denote the intensity of transmitted light by 7,
in the case of the crossed Polaroids, and by I in the case of the
parallel Polaroids. Then

I, =1,1,sin? 2¢-sin® (8/2),
I“ = i/210 [1 —_ sin2 2(p'SiIl2 (6/2)].
The conditions for the maximum and the minimum:

Potaroids ’ I'max I LIin

L A=(k+1/2) Ay p=1/4
il A=k\, for any ¢

A=k}, for any ¢
A=k+1/2) A, p=n/4

Here A is the optical path difference for the ordinary and extraor-
dinary rays, k. =0, 1, 2, ...
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5.187. (a) The light with right-hand circular polarization (from
the observer’s viewpoint) becomes plane polarized on passing through
a quarter-wave plate. In this case the direction of oscillations of
the electric vector of the electromagnetic wave forms an angle of
4 45° with the axis 0O’ of the crystal (Fig. 43a); in the case of left-
hand polarization this angle will be equal to —45° (Fig. 43b).

(b) If for any position of the plate the rotation of the Polaroid
(located behind the plate) does not bring about any variation in
the intensity of the transmitted light, the initial light is natural;

01 0y
! i
|
i |
i

| \\y
o o

(a) (8)
Fig. 43.

if the intensity of the transmitted light varies and drops to zero,
the initial light is circularly polarized; if it varies but does not
drop to zero, then the initial light is composed of natural and cir-
cularly polarized light.

5.188. (a) Az = 1/,A (ne — n,) O,
= —2(n, — ng) B8z << 0.

5.189. An = ai/n = 0.74-10"%, where « is the rotational con-
stant.

5.190. o = n/Az tan ® = 21 ang. deg./mm, I(z) ~ cos? (nz/Ax),
where & is the distance from the maximum.

5.491. dpin = (1/a) arcsin ' 21 = 3.0 mm.

5.192. 8.7 mm.

5.193. [a] = 72 ang. deg./(dm-g/cm3).

5.494. (a) Ein = 1/V 4Bl = 10.6 kV/cm;
ruptions per second.

5.195. An = 2¢HV/wo, where ¢ is the velocity of light in vacuum.

5.196. V =1/, (¢, — @,)/IH = 0.015 ang. min/A.

5.197. If one looks toward the transmitted beam and counts the
positive direction clockwise, then ¢ = (@ — VNH) I, where N is
the number of times the beam passes through the substance (in
Fig. 5.35 the number is N = 5).

5.198. H,,;, = n/4V] = 4.0 kA/m, where V is the Verdet con-
stant. The direction along which the light is transmitted changes
to the opposite.

5.199. t = mcw /Al = 12hours. Although the effect is very small,
it was observed both for visible light and for SHF radiation.

(by d(ng — ne) =

(b) 2.2-10® inter-

345



3.200. (a) a=eEy/mw2=5.10"1% cm, where E,=1 2I/e,c, v=
=an=1.7 cm/s; (b) F,/F,=2.9-10"1,

9.201. (a) e=1—nye?/egme?, v=c|)/ 1+ (nye2/4n2e,me?) A2,

5.202. ry = (4n*v’mey/e®)(1 — n?®) = 2.4.107 cm-3.

9.203. n — 1 = —ne®A*8n’eqme? = —5.4-10~7, where n, is
the concentration of electrons in carbon.

5.204. (a) z = a cos (ot + @), where a and ¢ are defined by
the formulas

eEo/m . 26&)
TV errwe T T
Here B =y/2m, wl=%k/m, m is the mass of an electron. (b) (P)=

B (eEo/m)? @2 E
—M___J_Tﬁ(‘;m’ (Phmax= Zé (e o) for o=y

5.205. Let us wrlte the wave equation in the form A = A jel(wi—hx),
where k = 2n/A. If n’ = n + ix, then &k = (2n/Ay)n’ and
A = Aneznxx/xoez(mt—2:mx/7»o)’
or in the real form
A= Age*’* cos (ot —k'z),
i.e. the light propagates as a plane wave whose amplitude depends

on r. When % << 0, the amplitude diminishes (the attenuation of
the wave due to absorption). When n’ = ix, then

A = A,e*'* cos wi.

This is a standing wave whose amplitude decreases exponentially
(if x << 0). In this case the light experiences total internal reflection
in the medium (without absorption).

5.206. n, = 4n*egmc?/e*Al = 2.0-10° cm 3,
5.208. (a) u =35 v; ) u = 2v; (¢) u = /5 v.
5.209. ¢ =1 4+ A/w® where A is a constant.

5.210. v =c¢/n = 1.83-10® m/s, u = [1 4 (Mn) (dn/dM)] ¢/n =
= 1.70-10® m/s.

5.211. It is sufficient to discuss three harmonic components of
the train of waves (most easily with the help of a plot).

5.212, I = t/,I e~ sin? @, where cp = VIH.

5.213. (a) I —=Tq (1 = p)* (1 + p* 4 p* + ...) =
=1,(1 —p)’/(1 —p"); ()T =1, (1 —-9)20(1 + ot ofpti..) =
= Ioo (1 — p)¥/(1 — o%?), where o == exp (—xd).

5.214. x=l—%gl/;—”)=0.35 om™t.
2 U1

2N
5.215. x=TjV A=07 _0.034 cmt.
T
5.216. v = (1 — p)2exp [—1/, (%, + x,) I).
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e~ -%gl

—e

5.217, I=1I,(1—p)? e —ny) 1

5.218. AA= 22,V (Inm)/ad.
(¢}
9.219. I=—4—nb—2(1_p)ze—%(b—a).

5.220. Will decrease exp (ud) = 0.6-10? times.

5.221. d = 0.3 mm.

9.222. d = (In 2)/p = 8 mm.

5.223. N = (In n)/In 2 = 5.6.

5.224. ¢ = 21z (ny, — n;) = 3.0-10® m/s.

5.225. First of all note that when v < ¢, the time rate is practic-
ally identical in the reference frames fixed to the source and to the
receiver. Suppose that the source emits short pulses with the inter-
vals T. Then in the reference frame fixed to the receiver the distance
between two successive pulses is equal to A = ¢Ty — v,T,, when
measured along the observation line. Here v, is the projection of the
source velocity on the observation line (v, = v cos 8). The frequency
of received pulses v = ¢/A = v/(1 — v,/c), where v, = 1/T,. Hence
(v — vo)/vy = (vlc) cos 6.

5.226. AL = —A V' 2T/mc? cos ® = —26 nm.

5.227. T = 4nRM 8\ = 25 days, where R is the radius of the
Sun.

0.228. d = (A?»/},)mcr/n =3.10" km, m = (AMA)IPt/2ny =
= 2.9-10% kg, where y is the grav1tat10nal constant.

5.229. o = o, (1 + B)/(1 — P), where ="V ox
=~ 0y (1 + 2V/c).

5.230. v = 1/,AAv ~ 900 km per hour.

9.231. Substituting the expressions for ¢’ and z’ (from the Lorentz

transformation) into the equation ot — kr = o’t' — k'z’, we
obtain

=o' LBV T—F2, k=K (1 +p)V T—P2,
where f = V/c. Here it is taken into account that o’ = ck’.

5.232. From the formula o'=o0 V(1—B)/(1+pB) we get P=
=v/c =0.26.

LR o

3.233. v=¢C m——7.1 10* km/s.

5.234. o=,V 3/7.

5.235. AMA = AT/myc?® = 0.70 nm, where m, is the mass of the
atom.

5.236. (a) 0 =wy/V 1T —PF2=5.0.1010 g-1 ; (B o=0, VT —p=
=1.8.1010 s-1 | Here B=v/c.

5.237. The charge of an electron and the positive charge induced
in the metal form a dipole. In the reference frame fixed to the elec-
tron the electric dipole moment varies with a period 7' = d'/v,

where d" = d /1 — (v/c)®. The corresponding “natural” frequency
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is v' = v/d’. Due to the Doppler effect the observed frequency is

’ ]/1— (v/c)? vid

v=v 1 — (v/c)cos B =1-—(17/1:) cosf°

The corresponding wavelength is A = ¢/v = d (¢/v — cos 8). When
8 = 45° and v = c the wavelength is A &~ 0.6 pm.

5.238. (a) Let v, be the projection of the velocity vector of the
radiating atom on the observation direction. The number of atoms
with projections falling within the interval v, v, + dv, is

n (v,) dv, ~ exp (—mvi/2kT)-dv,.

The frequency of light emitted by the atoms moving with velocity
Uy is @ = @, (1 + vi/c). From the expression the frequency distri-
bution of atoms can be found: n (0) do = n (v,) dv,. And finally
it should be taken into account that the spectral radiation intensity

Io ~n(0). (b) Av/e, = 2V (2 1In 2) kT/mct.
5.239. u_c/n+V If V<Le, then uz%-f-v (1_L).

T 1} Vien® Y]
5.240. v = /580 = 30 km/s.
5.242. 6" = 8.

5.243. The field induced by a charged particle moving with
velocity V excites the atoms of the medium turning them into sources
of light waves. Let us consider two
arbitrary points A and B along the P
path of the particle. The light waves
emitted from these points when the

particle passes them reach the point g
P (Fig. 44)simultaneously and amplify 77\ N
each other provided the time taken 4 7 7V

by the light wave to propagate from
the point 4 to the point C is equal
to that taken by the particle to fly
over the distance AB. Hence, we
obtain cos @ = v/V, where v = ¢/n is the phase velocity of light.
It is evident that the radiation is possible only if V > v, i.e. when
the velocity of the particle exceeds the phase velocity of light in
the medium.

5.244. Tpin=(n/V n2—1—1)me?; 0.44 MeV and 0.26 GeV
respectively. For muons.

5.245. T =(——20 1) me?=0.23 MeV.

V ntcos? —1

5.247. T,=bT,/(b+T,AN)=1.75 kK.

5.248. ), =3.4 pm,

5.249. 5.10° kg/s, about 10!t years.

5.250. T =3/3cRp/oM =2.10" K, where R is the universal
gas constant, M is the molar mass of hydrogen.

Fig. 44.
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5.251. t = (m® — 1) cpd/180T3% = 3 hours, where ¢ is the spe-
cific heat capacity of copper, p is its density.

5252, T,=T,V d2l=0.4 kK.

5.253. (a) Cy = (0U/3T)v =16 oT3V/c=3 nlJ/K, where U=
=46T*V/e; (b) S = 16067T3V/3¢c = 1.0 nJ/K.

5.254. (a) wp, = 3T/a = 7.85-10' s-1 ; (b) Ap, = 2nca/5T =
= 1.44 pm,

5.255. (8) up= (kT/n2c® w?; (b) uy = (/n2c?) o e~hw/kT,

16n2h v3 1652chA -5

9.256. uy= 3 ZmRv/RT _q° u7‘=e2nhc/hTh_1'

5.257. AP = 4n’c*BT3AMbB® (e2the/kb— 1) = 0.31 W/cm?, where
b is the constant in Wien's displacement law.

5.9258. (a) 1.1 pm; (b) 0.37; (c) Po/Py = (T,/T)* (1 — y)/(1—y,) =

1 ©? do 8nA—¢ d,
5.259. Re do= ey W_’_—T. n, dh = e—gnhc/km_l :

5.260. (a) {j) = PA/8n%hr? = 6-10" cm~2s71;
(b) r =V PM2:n/2nc = 9 m.

5.261. dpldt = D,le.

5.262. (p) =4 (1 + p) E/nd%t ~ 50 atm.

5.263. p=(Elc) )/ 1+ p*>+2pcos20=235 nN.s.

5.264. p = (I/c) (1 + p) cos? 6 = 0.6 nN/cm?2

5.265. F = nR%/c = 0.18 pN.

5.266. F = P/2c (1 + m?).

5.267. (a) Ap:@‘/—f__%si; (b) Ap=%‘°-1—i-6-, Here P=
=V/e. It is evident that in the reference frame fixed to the
mirror the latter obtains the smaller momentum.

5.268. sin (0/2) ~ E/mc )/ gl, 8=0.5°

5.269. Aw/wg = — (1 — e-¥M/R*) <= (, i.e. the frequency of

the photon decreases.
5.270. V = 2nkc (1 — 1/m)leAh = 16 kV.

5.271. V = mhcled sin o = 31 kV.
5.272. Apin=_2ah/me(y—1)=2.8 pm, where y=1/}/1—(v/c).
5.273. 332 nm, 6.6-10° m/s.

5.274. A— 2nch ‘—Q%i}-;’: 1.9 ev.
e
5.275. Qmax = 44 V.

5.276. Trox = k(0o + 0) — A4y = 0.38 eV.

5.277. w = 2nehJ/eh = 0.020.

5.278. Vg = 6.4-10° m/s.

5.279. 0.5 V; the polarity of the contact potential difference
is opposite to that of external voltage.

5.280. %/me, the Compton wavelength for the given particle.
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5.281. Let us write the energy and momentum conservation laws
in the reference frame fixed to the electron for the moment preceding
the collision with the photon: Am -+ mee® = me?, ho/c = mv, where

m = my V1 — (v/c)®. From this it follows that v =0 or v = ¢.
The results have no physical meaning.

5.282. (a) Light is scattered by the free electrons; (b) the increase
of the number of electrons that turn free (the free electrons have the
binding energy much lower than the energy transferred to them by
the photons); (c) the presence of a non-displaced component is due
to scattering by the strongly bound electrons and the nuclei.

5.283. A = 4nkc Isin (05/2) — 7 sin (68,/2)//(m — 1) = 1.2 pm.

5.284. T = hon/(1 + 1) = 0.20 MeV.

5.285. (a) o' =2nc/(A+ 2nk/me) = 2.2.1020 rad/s;

Sachih
5.286. ho’ — ko —0.144 MeV.

142 (ho/mc?) sin (8/2)
5.287. sin (6/2) =1 mec(p—p')/2pp’. Hence 6=120°.
5.288. ho = |14V T+ 2mc?/T sin? (6/2)] T/2 =0.68 MeV.
5.289. A = (2nh/me) (V' T+ 2mc2/Tmax— 1) = 3.7 pm.
V &nk]meAl— o
5.290. tan ¢ ——W , P= 31°.

2n(1+n) me .
5.291. 4 ‘T—T])BB 34 cm.

5.292. A\ = (4%/mc) sin® (8/2) = 1.2 pm.

6.1. r = 3¢¥2E = 0.16 nm, A = (2ncle) Y mr® = 0.24 pm.

6.2. b = 0.73 pm.

6.3. (a) rmin =0.59 pm; (b) rmin = (2Ze*T) (1 + me/mri) =

6 4. (a) pmin = (Ze*/T) cot? (8/2) = 0.23 pm; (h) Fin =

= [1 + cosec (6/2)] Ze*/T = 0.56 pm.

6.5. p~ 2V 2mT/[14- (26T /Ze2)2).
6.6. T',=mpet/m,b?T =4 eV.
. ‘Rn sin (8/2) VT

6.7. b= Vi prs ey TR where n=)'1 —}-UO/T.

6.8. (a) cos (0/2) = b/(R +r); (b) dP = t/ysin 8dO; (¢) P =
= 1/2.

6.9. 3.3-10-5,

6.10. d = (4Jr*T?*/nlZ%*) sin* (8/2) = 1.5 pm, where n is the
concentration of nuclei.

6.11. Zpt ZAg VT]Apt/AA =78.

6.12. (a) 1.6-10%; (b) N = nind (Ze*/T)? cot? (8,/2) I,t = 2.0-107,
where n is the concentration of nuclei.

6.13. P = nnd (Ze*/mv?)? = 0.006, where n is the concentration
of nuclei.

6.14. AN/N =1 — nnZ%*/T? tan® (6,/2) =
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6.15. AN/N = J57 (0 74 103 2) pdN scot? S = 1.4.10°3,

where Z;, and Z, are the atomlc numbers of copper and zinc,
M, and M, are their molar masses, N, is Avogadro’s number.
6.16. Ao = n (Ze*/T)? cot? (8,/2) = 0.73 kb.
6.17. (a) 0.9 MeV; (b) do/dQ = Ac/4n sin* (8/2) = 0.64 kb/sp.
6.18. t = (3mc*/2e20%) In = 15 ns.
6.19. t ~ m2c®r3/4et ~ 13 ps.

6.21_._ rp = Vnh/m(o, E, = nho, where n=1,2, ..., o =
= Vk/im.
6.22.
T, pm |v, 10 m/s| T, eV Ey, eV ®p V. o1, vV A, nm

H 52.9 2.18 13.6 13.6 13.6 10.2 121.5
He* 26.5 4.36 54.5 54.5 54.5 40.8 30.4

6.23. w = me*Z%/hdn® = 2.07.101¢ s-1,

6.24. p, = nekl2me, p,/M, = e/2me, p, = pg.

6.25. B — m?"/ch’ = 125 kG.

6.27. The Brackett series, Ag., == 2.63 pm.

6.28. (a) 657, 487 and 434 nm; (b) A/SA &~ 1.5-103.

6.29. For n>> 1 sin 0 ~ n3nc/lR, whence 0 ~ 60°.

6.30. He*.

6.31. N = t/pn (n — 1).
6.32. 97.3, 102.6 and 121.6 nm.

6.33. n = 5.
176 _
6.34. R:m%: 2.07.1016 51,

6.35. Z =V (176/15) ne/RAL =3, Li™.

6.36. A= (2nc/Aw) (ZV R/A0 —1)/(2Z V R/A® —1) = 0.47 pm.
6.37. E, = 54.4 eV (He").

6.38. E — E, -+ 4hR = T79 eV.

6.39. v=V 2 (ho —4kR)/m = 2.3-10% m/s, where o = 2mc/A.
6.40. T,in = 3.AR = 20.5 eV.

6.41. v = 3AR/4mc = 3.25 m/s, where m is the mass of the

6.42. (e — €)e ~ 3AR/8mc* = 0.55-10%%, where m is the
mass of the atom.

6.43. v = 2 V AR/m = 3.1-108 m/s, where m is the mass of
the electron.

6.44. v — 3RAM8m cos 6 = 0.7-10° m/s.

6.45. (8) E, = n*n’#*/2mi* (b) E, = n®R*/2mr% (c) E, =
= nk Vajm; (d) E, = —ma?/2k%nl.
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6.46. E, = pe*/2h%, R = pe*/2h°, where p is the reduced mass
of the system. If the motion of the nucleus is not taken into account,
these values (in the case of a hydrogen atom) are greater by m/M ~
=~ 0.055%, where m and M are the masses of an electron and a pro-
ton.

6.47. Ep — Eyx = 3.7 meV, Ag — Ap = 33 pm.

6.48. (a) 0.285 pm, 2.53 keV, 0.65 nm; (b) 106 pm, 6.8 eV,
0.243 pm.

6.49. 123, 2.86 and 0.186 pm.

6.50. 0.45 keV.

6.51. For both particles A= 2nh (1 + m,/my)/) 2m,T =8.6 pm.
6.52. X = 2AAy/) AT AL

6.53. A =2n#k/) 2mkT =128 pm.

6.54. First, let us find the distribution of molecules over de

Broglie wavelengths. From the relation f (v) dv = —¢ (M) dA where
f (v) is Maxwell’s distribution of velocities, we obtain

@ (M) = AMte~uAt g = 2nkY nkT.

The condition dg/di=0 provides A, =nk/} mkT =0.09 nm.

6.55. A=2nk/V 2mT (1 +T/2me?), T < 4mc2AM/A=20.bkeV (for
an electron) and 37.5 MeV (for a proton).

6.56. T = (V' 2—1)mez2=0.21 MeV.

6.57. A=Agp/V T+ mch,,/nki=3.3 pm.

6.58. v=4nhl/mbAz=2.0-108 m/s.

6.59. Az =2nhl/d VQmEV =4.9 pm.

6.60. V, = n2k2/2me (V' —1)2d2sin26=0.15 keV.

6.61. d=nkk/)/ 2mT cos (8/2) =0.21 nm, where k= 4.

6.62. d = nkk/Y 2mT sin 8 =0.23 + 0.04 nm, where k=3 and the
angle 6 is determined by the formula tan 20 = D/2L.

6.63. (a) n=V 14V, /¥ =1.05; (b) V/V;>1/m(2+n) =50.

6.64. E, = n*n®h*/2mi?, where n = 1 .

6.66. 1-10%, 1.10 and 1-10-2° cm/s.

6.67. Av ~ i/ml = 1.10¢ m/s; v, = 2.2-10% m/s.

6.69. At ~ nml*/h ~ 10716 s, :

6.70. Tpin =~ B*/2mi* = 1 eV. Here we assumed that p ~ Ap
and Az = L

6.71. Av/v ~K/1Y 2mT = 1-10-4.

6.72. F =~ R*/mi3.

6.73. Taking into account that p ~ Ap ~ h/Az ~ Klz, we get
E=T4 U~ h*2mz* + kz¥/2. _From the condition dE/dx =0
we find z, and then E,,;, &~ % V k/m = ho, where o is the oscillat-

or's angular frequency. The rigorous calculations furnish the value
ha/2.

6.74. Taking into account that p ~ Ap ~ h/Ar and Ar ~r,
we get E = p?/2m — e®/r ~ h¥*2mr® — €*/r. From the condition
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dE/dr = 0 we find ry; ~ h%*me? = 53 pm, E;, ~ —me/2h? =
= —13.6 V.

6.75. The width of the image is A~ 8§ + A" =~ § + Ahl/pS,
where A’ is an additional widening associated with the uncertainty
of the momentum Ap, (when the hydrogen atoms pass through the
slit), p is the momentum of the incident hydrogen atoms. The func-
tion A(8) has the minimum when § ~ V' %l/mv = 0.01 mm.

6.76. The solution of the Schrédinger equation should be sought
in the form ¥ = ¢ (x)-f (t). The substitution of this function into
the initial equation with subsequent separation of the variables 2
and ¢ results in two equations. Their solutions are ¢ (z) ~ e*,
where k = V' 2mE/h, E is the energy of the particle, and f (f) ~
~ e 0! where @ = E/%. Finally, ¥ = gei(,x-01) where ¢ is a cer-
tain constant.

6.77. P=1/3 1V 3/2n=0.61.

Acos (nnz/l), if n=1, 3, 5, ...,

6.78- 117:{ ASin(nnx/l)7 lf n=2’ 4, 6, cos
Here 4=}/ 2/1.

6.80. dN/dE = (lnh) Y m/2E; if E =1 eV, then dN/JE=
= 0.8-107 levels per eV.
6.81. (a) In this case the Schrodinger equation takes the form

Z::‘E %‘L’ +k2p=0, k2=2mE/n2.

Let us take the origin of coordinates at one of the corners of the
well. On the sides of the well the function ¥ (z, y) must turn into
zero (according to the condition), and therefore it is convenient to
seek this function inside the well in the form ¥ (z, y) = a sin kz X
X sin kyy, since on the two sides (x = 0 and y =0) ¢ = 0 automa-
tically. The possible values of k, and k, are found from the condi-
tion of \ turning into zero on the opposite sides of the well:

‘q.) (ll? y) S 0, kl == j: (ﬂ/ll) nl, nl == 1, 2, 3, “ s ey
\b (x, l2) - 07 kz = :t (n/l2) nza n2 = 11 2a 3’ ¢ s
The substitution of the wave function into the Schrodinger equa-
tion leads to the relation k? + k2 = k*, whence
Enpn, = (0317 + ni/1%) n®A%2m.

(b) 9.87, 24.7, 39.5, and 49.4 units of A%/ml2.

6.82. P = 1/3 — /' 3/4n = 19.5%.

6.83. (a) E = (n} + n} + n?) n®h%/2ma®, where n,, n,, ng are
integers not equal to zero: (b) AE = n%4%ma?; (c) for the 6-th level
n 4 n; + ny=14 and E = 7n*h*/ma? the number of states is equal
o six (it is equal to the number of permutations of a triad 1, 2, 3.)
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6.84. Let us integrate the Schrédinger equation over a .sm.all
interval of the coordinate z within which there is a discontinuity

in U (), for example at the point z = 0:
16
oy 9y _{ 2rp_
Fy— == ] FE-vde
Since the discontinuity U is finite the integral tends to zero as

5 — 0. What follows is obvious. _ .
6.85. (a) Let us write the Schrédinger equation for two regions

O<z<<l, ¢ k=0, k= 2mE/[R?,
z>1, W, —xp, =0, %*=2m (U, — E)R%
Their common solutions
Pp () = asin (kx + @), ¥y (@) = be* -|- cer=*

must satisfy the standard and boundary conditio_ns. From the condi-
tion P; (0) = O and the requirement for the finiteness of the wave

/

Fig. 45.

function it follows that a=0 and c=0. Aqd finally, from t}}e
continuity of P (z) and its derivative at the point z = 1 we obtain
tan kl = —k/x, whence

sin kl = + kL TERmI0,.

Plotting the left-hand and right-hand sides of the last equation
(Fig. 45), we can find the points at which the stral.ght line crosses
the sine curve. The roots of the equation corresponding to the eigen-
values of energy E are found from those intersection points (kl);
for which tan (kl); < 0, i.e. the roots of that equation are located
in the even quadrants (these segments of the abscissa axis are shown
heavy in the figure). It is seen from the plot that the roots of .the
equation, i.e. the bound states of the particle, do not always exist.
The dotted line indicates the ultimate position of thtz s;oralght line.
(d) (BUo) min = n*h*8m, (PUgn min = (2n — 1) n*7*/8m.
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6.86. Suppose that P, and P, are the probabilities of the particle
being outside and inside the well. Then
§ bre=2"* gz
Py _ 1
Py~ 1
S a? sin®kx dz
0
where the ratio b/a can be found from the condition vy, (1) = P, ().
Now it remains to take into account that P, +P ; = 1; then P, =
= 2/(4 + 3n) = 14.9%.
The penetration of the particle into the region where its energy
E < U is a purely quantum phenomenon. It occurs owing to the
wave properties of the particle ruling out the simultaneous precise
magnitudes of the coordinate and the momentum, and consequently
the precise division of the total energy of the particle into the poten-
tial and the kinetic energy. The latter could be done only within
the limits set by the uncertainty principle.
6.87. Utilizing the substitution indicated, we get

X" + k*y = 0, where Kk® = 2mE/R.
We shall seek the solution of this equation in the form y =
= g sin (kr + a). From the finiteness of the wave function ¢ at

the point r =0 it follows that a = 0. Thus, ¢ = (a/r) sin kr. From
the boundary condition  (ry) = 0 we obtain kry = nm, where

=3T3n°

n=1, 2, ... Hence, E, = n*n®h*2mr}.
1 sin(nnr/ry) . . .
6.88. (a) y(r)= Ve —, n=1,2, ...; (b) rpr=
=ro/2; 50%.

6.89. (a) The solutions of the Schrédinger equation for the func-
tion vy (r):

r<<ry, Y1=Asin (kr+a), where k=1 2mE/R,
r>>ry, Xp=Bex"+ Ce=*", where x=12m (U,— E)/h.

Since the function { (r) is finite throughout the space, @ = 0 and
B = 0. Thus,

-RT

sin kr e

¢1 =A r ’ ‘Pz = C r
From the continuity of the function 1 and its derivative at
the point r = r, we get tan kr, = —k/x, or

sin kry= = V #¥/2mriUgkr,.

As it was demonstrated in the solution of Problem 6.85, this equa-
tion determines the discontinuous spectrum of energy eigenvalues.
(b) r?U, = n®k*8m.

23 355



6.90. @ = mo/2%, E = ho/2, where o = Vikim.
6.91. E — —me"/8%?, i.e. the level with principal quantum

number n = 2. _ X
6.92. (a) The probability of the electron being at the interval

r, r + dr from the nucleus is dP = P? (r) 4nr?dr. From the condi-
tion for the maximum of the function dP/dr we get ry, =ry;
(b) (F) = 2e%/r}; (c) (U) = —e*/ry.

6.93. @, = S (p/r) 4nur® dr =-elr;, where p =-e}? is the space
charge density, v is the normalized wave function.

6.94. (a) Let us write the solutions of the Schrédinger equation
to the left and to the right of the barrier in the following form:

<0, Py (x) =aeth*+ bie=ik1x, where ky= V 2mE/",
z>>0, Py (x) = azethr* + b,e—ir2* where k,= Vom (E—Uy)/h.

Let us assume that the incident wave has an amplitude a, and the
reflected wave an amplitude by Since in the region z >0 there is
only a travelling wave, by = 0. The reflection coefficient R is the
ratio of the reflected stream of particles to the incident stream, or,
in other words, the ratio of the squares of amplitudes of correspond-
ing waves. Due to the continuity of  and its derivative at the point
z = 0 we have a, + b, = a, and a; — by = (ko/k,) a,, whence
R = (bilay)? = (ky — ko) (Fy + ky)?.

(b) In the case of E << Uy the solution of the Schrodinger equa-
tion to the right of the barrier takes the form

Py (%) = a6™% -+ bye™ ", where x= YV 2m (U,— E)/A.
From the finiteness of ¥ (z) it follows that a; = 0. The probability

of finding the particle under the barrier has the density P, (z) =
= y? (z) ~ e~ Hence, Zory = 1/2.

6.95. (a) Dzexp[—%VQm(Uo—E)J ;

8Ly 2m -
(b) Dzexp[——?’}ﬁ/—U—o’ﬁ (UO—E)a/zJ.

nl 2m
6.96. D ~ exp [—T s (UO_E)]o
6.97. —0.41 for an S term and —0.04 for a P term.
6.98. oc=1/hR/(Eo—eq>,)—3= —0.88.

6.99. E,—hR/(Y Rhhy/20cA) —1)2=5.3 eV.

6.100. 0.82 um (35 —» 2P) and 0.68 pm (2P —25).

6.101. AE — 2mhcAMA? = 2.0 meV.

6.102. Ao = 1.05-10 rad/s.

6.103. 35,2, 3P1/ar 3Pass, 3Dssz 3Dse.

107 (T 2, 574 51 (b) 0,1, 2, 3, 4, 5, 6 () 1/2, 3/2, 5/2,

7/2, 9/2.
356

6.105. For the state “P: 1)/ 3/2, k) 15/2, and %V 32/2; for
the state 5D: 0, AV 2; AV 6, V12, KV 20.

6.106. (a) 2F7)2, Mmax:hl/ég/&_(b) 3F,, Mumax=2kV5.

6.107. In the F state M,==%)/6; for the D state it can be
only found that M,>%V 6.

6.108. 3, 4, 5.

6.109. (a) 1, 3, 5, 7, 9; (b) 2, 4, 6; 5]

6.110. 31°. ®) 2,4 6008 7 5

6.111. 3D,.

6.112. 1P, Dy, 1F,, 3P 1 5, *Dy 5 5, 3F 5 5.4

6.113. The same as in %ﬁ; foretg‘?)'iang pzr'g'kflem.

6.114. The second and the third term.

6.115. g = 4 + 6 = 10.

6.116. 4, 7 and 10.

6.117. 3F,.

6.118. As.

6.119. (a) %Sy (b) °P,.

6.120. (a) “Fs,2, BV 15/2; (b) “Fyp, K3V T1/2.
tror(;.lZl. (a) Two d electrons; (b) five p electrons; (c) five d elec-

6.122. (a) Py, (b) *Fys.

6.123. Fypy. )

6.124. = pz V'35 (6S,0).

6.125. 1 = nle-ho/kT = 3-210‘”, where @ = R (1 — 1/n?).

6.126. N/No = (g/go) e—no/kT — 1 14.10-%, where g and g,
are the statistical weights (degeneracy ratios) of the levels 3P and
38 respectively (g = 6, g, = 2).

6.127. 1 = l/vlnm = 1.3 ps.

6.128. N = AtP/2nch = 7-10°,

6.129, © = (nhm/P_) (glg,) e~ "@/kT = 65 ns, where g and g
are 6th1e3 (()ieg(e;lerla)cy /ratlos of the resonant and the basic level.

.130. (a P,, = 1/(eho/kT _ 1) ~ 403 =
=3, R, (b) T =170 K.( : M where

6.131._ Suppose that I is the intensity of the passing ray. The
decre.ase in this value on passing through the layer of the substance
of thickness dr is equal to

—dl = xl dax = (N By, — N,By)) ({/c) ko dz,

where N, and N, are the concentrations of atoms on the lower and
upper levels, B, and By, are the Einstein coefficients. Hence

% = (Rolc) N By (1 — g1No/g:N ).

Next, the Boltzmann distribution should be taken into considera-
tion, as well as the fact that Zw > kT (in this case V, is approxim-
ately equal to N, the total concentration of the atoms).

6.132. Ahpop/Ahpa = 4dntv,, /A &~ 10%, where v,, = V 2RT/M.
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6.133. A = 154 pm.

6.134. (a) 843 pm for Al, 180 pm for Co; (b) =5 keV.
6.135. Three.

6.136. ¥V = 15 kV.

6.137. Yes.

6,138, Z=1+4+2V (n—1) eV J3ER (n—V/V2) =29,

6.139. Z = 1 + V%Aw/3R = 22, titanium.

6.140. E, = 3 AR (Z — 1)* + 2nch/hy, = 5.5 keV.

6.141. £; = ko (2nc/oAl — 1) = 0.5 keV, where ® =
= 3/,R (Z — 1)

6.142. T = 3/ ,hR (Z — 1)? — 2nch/hg = 1.45 keV, v =
=2.26-107 m/s.

6.143. (a) g = 2, with the exception of the singlet state, where

= 0/0; (b) g = 1.

6.144. (a) —2/3; (b) 0; (c) 1; (d) 5/2; (e) 0/0. _

6.145. (a) V' 12ug; (b) 21/ 3/5ps; (o) (8/V 3) pg.

6.146, M =2 1/_3?1.

6.147. p=(8/)/3) ps-

6.148. n =3V 7HBus.

6.149. u—(5 1 5/2) pp-

6.150. M =h}/3/2.

6.151. °F,. .

6.152. o = up/gB/h = 1.2.10'° rad/s, where g is the Landé
factor. _

6.153. Frax = LB max* |0B/02] = (3/V 8) nlg/ppler® =
= 4-10-% N.

6.154. F = 2Ipgler® = 3-107% N.

6.155. dBloz = 2T8/gJpgl, (I + 21;) = 15 kG/em.

6.156. (a) It does not split; (b) splits into 6 sublevels; (c) does
not split (g = 0).

6.157. (a) 58 peV; (b) AE = 2gJupB = 145 peV.

6.158. (a) Normal; (b) anomalous; (c) normal; (d) normal (both
terms have identical Landé factors).

6.159. L = AE/2ugB = 3; 'F,.

6.160. AA = A%eB/2nmc® = 35 pm.

6.161. By = 4.0 kG.

6.162. B = hAw/gps = 3 kG.

6.163. (a) 2 .1 (the ratio of the corresponding Landé factors);
(b) B = 2nchAMgugnA? = 5.5 kG.

6.164. Ao = (3=1.3, +4.0, +6.6)-10'° s-1 , s1x components.

6.165. (a) Six () and four (2); (b) nine (Z) and six (2).

6.166. Aw = (M2, — Mefs) maxeB/me = 1.0-10" s-1 .

6.167. @ = 4 V 2h/md® = 1.57-10" s-! , where m is the mass
of the molecule.

6.168. 2 and 3.
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6.169. M = V' md?E/2 = 3.5%, where m is the mass of the mole-
cule.

6.170. I = k/Aw = 1.93-10% g.cm?, d = 112 pm.

6.171. 13 levels.

6.172. N ~ V 2Iw/h=33 lines.

6.173. dN/dE ~ V I/2R2E, where I is the moment of inertia
of the molecule. In the case of /=10 dN/dE=1.0.-10* levels
per eV,

6.174. E,;,/E.o; = oud?/h, where p is the reduced mass of
the molecule; (a) 36; (b) 1.7-10%; (c) 2.9-10%.

6.175. N /N, ot = 1/~ n0~-2B)RT — 3 4.404, where B =
= h/2I, I is the moment of inertia of the molecule.

6.176. According to the definition

D Epexp(—Ey/kT) ) Epexp(—aEy)
D exp (— E,/kT) o >l exp (—aEp)

(Ey=

where E, = ko (v + 1/2), @ = 1/kT. The summation is carried out
over v taking the values from 0 to oo as follows:

s B ] exp (— aho/2)
(By= =55 In Dy exp(—aky) = — 5z In ooy =
ko ko .
=5t g Gern—1

9(E) _ R (ho/kT)?eh®/kT
Cvop=N —5-= P e 0.56R,

where R is the universal gas constant.

6.177. d= |/ 2h/pA®=0.13 nm, where p is the reduced mass
of the molecule. )

6.178. A = A/(1 F why/2nc) = 423 and 387 nm.

6.179. @ = nic (A, — Ay)/A A, = 1.37-10Mrad/s, » = 4.96 N/cm.

6.180. I,/I,=exp (—hw/kT)=0.067. Will increase 3.9 times.

6.181. (a) See Fig. 46a in which the arrows indicate the motion
directions of the nuclei in the molecule at the same moment. The
oscillation frequencies are w,, w,, w,; with @, being’ the frequency
of two independent oscillations in mutually perpendicular planes.
Thus, there are four different oscillations. (b) See Fig. 46b; there
are seven different oscillations: three longitudinal ones (®;, w,, ©®3)
and four transversal ones (w,, ®;), two oscillations for each
frequency.

6.182. dN, = (/) dw.

6.183. dN, = (S/2u?) o do.

6.184. dN, = (V/a%®) o? do.

6.185. (a) © = (%/k) nwny; (b) © = (BlkYv V 4nng; (c) © =
= (B/k) v 3/ 6a’n,.
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6.186. © = (a/k) Y 18m2no vy’ + 2v7°) =470 K, where n, is the
concentration of the atoms.

C 0 H C c H
2 W ————o——e———oP——O=n-

O ———— IO W, A O OB OBl [/

g——é——v “’3 e OO el wJ
Wy
(a) : : z o

(6)

Fig. 46.

6.187. vzk@/ﬁy6n2n0:3.4 km/s, where n, is the concent-
ration of the atoms. The tabulated values are: v;=6.3 km/s,
v, =3.1 km/s.

6.188. The oscillation energy of a mole of a “crystal” is

o/T

o=no[4+(5)" | ).

where z=%w/kT. Hence the molar heat capacity is
e/r

C:R(_%TLS zdzr 8/T )

ex—1  g8IT_4

‘ When T >> ©, the heat capacity C =~ R.
\‘\ 6.189. (2) dN/do = 2l/na V Ohex — 0% (b)) N =la, ie.
is equal to the number of the atoms in

i av the chain.
| dw 6.190. U, = 9RO/8y = 48.6 J/g,
‘\; - 47 where p is the molar mass of copper.
! ok 6.191. () ® =~ 220K; (b) C =
| i 10 J/(mol-K); () Omax = 41 X
: i X 10 rad/s. ‘
“ - 6.193. Yes, because the heat capac-
“ or ity is proportional to 7 at these tem-
- i peratures.
L 6.194. (E) = 3/84 kO.
Y V- 6.195. See Fig. 47.
g b5 M, 6.196. ho)magx — 98 meV, Fkmax~
i ) ~10-1* g.cm/s.
Fig. 47. 6.497.  (a) Tmax = (3720)2PH%/2m;

() (T) = YsT s
6.198. = 1 — 2-9% x 65%.
| 6.199. 0.93.

6.200. ~ 3-10* K.
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6.201. AE = 2n%h¥mV (3n%n)l® = 2.10-2 eV.

6.202. (a) dn, = (m®/n*h%) v? dv; (b) W) Vmey = 3/4.

6.203. dn, = 8nA~* dA.

6.204. p = 2/an (T) = (n 3/ 9nh?5m) n¥® ~5-10* atm.

6.205. A = kT (MT/AT — 2) = 4.5 eV.

6.206. n=V1LU,/T=1.02, where Uy="Tpox+A4, Thox=
= (3n2n)¥® k2/2m. A is the work function.

6.207. Epin= ?TI;” In1=0.33 eV,
1 62_ ! nch
6.208. a 2-9-3%= — s = —0.05 K™, where p~ @AEQ/2kT

AE, is the forbidden band width.
Alno

6.209. AE = —QkW_T):LQ and 0.06 eV.

6.210. r:t/ln%‘;——‘;;—g%:o.m s.

6.211. n = hBV/elpV gy = 5-10% cm=, u, = IV /hBY =
= 0.05 m?%*(V-s).

6.212. |u; — uf| = 1/mB = 0.20 m?/(V:s).

6.213. n*/n- = n? = 4.0.

6.214. (3) P =1 — exp (—M); (b) T = 1/A.

6.215. About 1/4.

6.216. 1.2-10%,

6.217. T = 16 s.

6.218. T = 5.3 days.

6.219. 4.6-10% part./min.

6.220. , = —(1/)In (1 — n) =n/t =1.1-407% 571, v =1/ =
= 1.0 years.

6.221. T = 4.5-10° years, 4 = 1.2-10* dis./s.

6.222. 4.1-10% years.

6.223. About 2.0-10° years.

6.224. 3.2.1017 and 0.8-10° dis/(s-g) respectively.

6.225. V = (A/A") exp (—tIn 2/T) =6 L.

6.226. 0.19%.

6.227. T, = 1.6 hours, T, = 9.8 hours; N,/N, = (T,/T,) X
X exp {(In 4, — 1n 4,) = 10.

6.228. ¢t = —(T/In2) In (1 — A/g) = 9.5 days.

6.229. (a) Ny (1) = N jg 5o (e~ Mt —o=het);
27 M
In (A, /M

(b) tn= 02,

6.230. (a) N, (t) = AN;ot exp (—At); (b) t,, = 1/A.

—hat ~Aqt
6.231. Ny (t)=Ny (1+ o ";‘29 ~).
. g — M1 .

6.232. Ng = Noh, exp (—Mt) =0.72.101" part./s, Ngo =
= N, (Mt — e~Mt) L Ay/(Ay — Ay) = 1.46-10"* part./s. Here N,
is the initial number of Bi%*® nuclei.

6.233. (a) Pb2%%; (b) eight alpha decays and six beta decays.
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6.234. v=V 2molo/m=3.4-10° m/s; 0.020.
6.235. 1.6 MJ.
6.236. 0.82 MeV.
6.237. (a) 6.1 cm; (b) 2.1-10% and 0.77-10° respectively.
M, — M )c? for B~ decay and K-capture,
6.238. 0 — (Mp a) p y P
(Mp,— My—2m)c® for f* decay.

6.239. 0.56 MeV and 47.5 eV.

6.240. 5 MIJ.

6.241. 0.32 and 0.65 MeV.

6.242. T ~ 1,0 (Q + 2mc?)/Mnc® = 0.11  keV, where ¢ =
= (Mx — M¢c — 2m) ¢%, m is the mass of an electron.

6.243. 40 km/s.

6.244. 0.45 ¢, where ¢ is the velocity of light.

6.245. Aele = E/2mc? = 3.6-10-7, where m is the mass of the
nucleus.

6.246. v ~ s/mc = 0.22 km/s, where m is the mass of the nuc-
leus.

6.247. v = ghlc = 6> pm/s.

6.248. hpy, = Bc*/ger = 4.6 m.

6.249. T = T, /l1 + (M — m)*/4mM cos®* 8] = 6.0 MeV, where
m and M are the masses of an alpha particle and a lithium nucleus.

6.250. (a) n = 4mM/(m + M)? = 0.89; (b) n = 2m/(m + M) =
= 2/3. Here m and M are the masses of a neutron and a deuteron.

6.251. 0., = arcsin (m/m,) = 30°, where m; and m, are the
masses of a proton and a deuteron.

6.252. 2-10'* kg/cm?, 1-10% nucl./cm?®.

6.253. (a) d; (b) F17; (c) a; (d) CI*".

6.255. Be8, E, = 56.5 MeV.

6.256. (a) 8.0 MeV; (b) 11.5 and 8.7 MeV; (c) 14.5 MeV.

6.257. E, — E, = 0.22 MeV.

6.258. E = 0ene — 2-4&q — 12ec = 11.9 MeV, where & is
the binding energy per nucleon in the corresponding nucleus.

6.259. (a) 8.0225 a.m.u.; (b) 10.0135 a.m.u.

6.260. O = (Eqy + Fy) — (E, + Es).

6.261. (a) 8.2-10% kJ, 2.7-10% kg; (b) 1.5 kg.

6.262. 5.74-107 kJ, 2-10* kg. ‘

6.263. 2.79 MeV; 0.85 MeV.

6.264. Q = 8e, — Tery = 17.3 MeV.

6.265. O = (1 +np) TP —'(1 —na) Ta —2 VnpnanTa X
X cos 8 = —1.2 MeV, where 1, = mp/mo, Ne = Ma/Mo.

6.266. (a) —1.65 MeV; (b) 6.82 MeV; (c) —2.79 MeV;
(d) 3.11 MeV.

6.267. v, = 0.92-107 m/s, vy = 0.53-107 m/s.
6.268. 1.9 MeV.
Q+(U—ma/mg)T
6.269. T, = T g
6.270. 9.1 MeV, 170.5°

= 8.5 MeV.
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6.272. T > Ey (mp + mg)/mg = 3.3 MeV.
6.273. Between 1.89 and 2.06 MeV.
6.274. O = —-“/12 Tgh = —3.7 MeV.
6.275. 1.88 and 5.75 MeV respectively.
6.276. 4.4 MeV; 5.3-10° m/s.
1
- 6;577-mTa= m.s_i_m‘tg(m,,—mi) T——m':j_m,;z T,h] =2.2 MeV, where
1, My, M3, m, are the masses of neutron, Ccz
alpha particle, and a Be® nucleus. o auclevs, an
6.278. By E,/2mc* = 0.06%, wher is th
6310 B — a7 6.; Ve e m is the mass of a deuteron.
6.280. E,=E, -+ md’:fmc T,=16.7, 16.9, 17.5 and 17.7 MeV,
where £, is the binding energy of a deuteron in the transitional
nucleus.
6.281. 0 = (M/Np d) In n = 2.5 kb, where M is the molar m
of cadmium, V is the Avogadro number, p is the density of cadmiuéx‘:ﬁs
6.282. I/I = exp [(20, + 0,) ndl = 20, where n is the concen-
tratGmZnSBOf heavy water molecules.
283, w={1 —expl — (0, + 0,) ndl / =
where n is the concentration of l'?e nug;ei. b odon o) 035,
6.284. (a) T = (w/k) In 2; (b) w == ATe/ltIn 2 = 2-10-3,
6.285.13(a) t = n/oJ_ = 3-10% years; (b) Npox = JoNT/In 2 =
= 1.0-10'3, where N, is the number of Au'® nuclei in the foil.
6.286. N = (1 — e~M) Jno/A.
_ 6.287. J = AeM/oN, (1 — e™™) = 6-10° part./(cm?-s), where A
is the decay constant, N, is the number of Au nuclei in the foil.

o 1165',288. N = Ngk*-1 = 1.3.10%, where i is the number of genera-

gggg N =vP/E = 0.8-10'® s-1,

.200. (a) N/Ngy = 4-10% (b) T = v/(k — 1) = 10 s.
6.291. 0.05, 0.4, and 9 GeV respectively. :

6.292. (h=ct, V' n(n+2) =15 m.

6.293. To = lmc/ VT(T ¥ 2mc®) = 26 ns, where m is the rest
mass of a pion.

6.294. J/Jy=exp[—lme/v, V' T (T +2me?)] =0.22, where m is
the rest mass of a negative pion.

6.295*. T, = (mx — m,)%2mx = 4.1 MeV, E, = 29.8 MeV.
6.296*. T = [(mz — m,)? — m%]/2mz = 19.5 MeV.
6.297*, Tpax = (my — me)*2m, = 52.5 MeV.
6.298* m=m,4 T - 2 =

e p+T+Vmi +T(T F2m,)=1115 MeV, a A
6.299*. E, = Y/, (m% — mi)/(mx + T) = 22 MeV.

* In the answers to Problems 6.295- i
quantity s Gaomers to Problems 6.299 marked [by an asterisk the

363



6.300%. m—V m% 5 mi—2 (mz+ I's) (Mx+ Tx)=0.94 GeV,
neutron.

6.301%. T, = my lcosec (0/2) — 1], Ey = mg/2 sin (0/2). For
® = 60° the energy T'n = Ey = Ma.

6.303*. cos (8/2) = 1/V 1 + 2m/T, whence @ = 99°.

6.304*. (a) &y = 4m, = 2.04 MeV; (b) &, = 2mq (1+malmp) =
= 320 MeV.

6.305*%. (a) Ty, = 6m, = 5.6 GeV; (b) Tipn=my (4my+mg)/2m =
= 0.28 GeV.

6.306. (a) 0.90 GeV; (b) 0.77 GeV.

6.307. § = —2, ¥ = —1, B particle.

6.308. Processes 1, 2, and 3 are forbidden.

6.309. Processes 2, 4, and 5 are forbidden.

6.310. Process 1 is forbidden in terms of energy; in other pro-
cesses the following laws of conservation are broken: of baryon
charge (2), of electric charge (3), of strangeness (4), of lepton charge
(5), and of electron and muon charge (6).

* In the answers to Problems 6.300-6.305 marked by an asterisk the quan-
tity mc® is abbreviated as m.

APPENDICES

1. Basic Trigonometrical formulas

sin? ¢ -cosB a=1
sec?a—tan? =1
cosec®a—cot2a=1

sin (@ 4= §) =sin @ cos B 4= cos & sin f
cos (& =+ B)==cos o cos f = sin a sin
tana 4 tan P

sin a-cosec =1 tan (o & ) = 1 F tan a-tan B
cos a.-sec o= 1 cotaucot B 1
tan at-cot =1 cot (o &= §) = cot f 4-cot o
- 1
SN 0l = ~—ee———— sin oo 1-8in §= i (Z—}—B %
ViTeots ~+sin f=2sin 5 €08 —
1
COS QL= ————r—— sin ¢ —si = (1.+B i G.—ﬁ
g ERrT nfP=2cos 5 Sin—
sin 2 =2 sin & cos & cosatcosB=2cos oa-;—[i cos a;B
cos 2a.=cos? a—sin? o €0s a— c0s B= — 2sin a-;—[ﬂ sin a;[ﬂ
2tan a i
tan 20t = ———— tan o 4= tan P = Mﬁ)—
1~2tan2<x + tanf cos o cos f§
cot?o—1 i
cot 200 = ————r cot o 4= cot = sin@h
2cota * p= = sin o sin §§

o % {—cos
PR =

cos % — ]/ f+cosa
2 2

2sin o sin f=cos (a— f)—cos (24 f)
2 cos o cos B=cos (x— P} + cos (e )
2 sin o cos f=sin (¢— B) --sin (o +-f)

a —Q
. % —
sinh o= 29
[+ 4 —a
e
cosh o= %

a —
e*—e

tanb = ———o-
e% e *
[+4 -
e

cof,h o= T—i:e_—
e%—e %
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2. Sine Function Values

3. Tangent Function Values

rqﬁ 0’ 20’ 40" v 0’ 20’ 407
0.0000 0.0058 | 0.0116 45 0.7074 | 0.7112 | 0.7153
(1) 0.0475 0.0233 | 0.029 46 0.7193 | 0.7234 | 0.7274
2 0.0349 0.0407 | 0.0465 47 0.7314 | 0.7353 | 0.7393
3 0.0523 0.0584 | 0.0840 48 0.7431 | 0.7470 | 0.7504
4 0.0698 0.0756 | 0.0814 49 0.7547 | 0.7585 | 0.7622
5 0.0872 0.0929 | 0.0987 50 0.7660 | 0.7698 | 0.7735
6 0.1045 0.1103 | 0.1161 51 0.7771 | 0.7808 | 0.7844
7 0.1219 0.1276 | 0.1334 52 0.7880 | 0.7916 | 0.7951
8 0.1392 0.1449 | 0.1507 53 0.7986 | 0.8021 | 0.8056
9 0.1564 0.1622 | 0.1679 54 0.8090 | 0.8124 | 0.8158
10 0.1736 0.1794 | 0.18%1 55 0.8192 | 0.8225 | 0.8238
11 0.1908 | 0.1965 | 0.2022 56 0.8290 | 0.8323 | 0.8355
12 0.2079 0.2136 | 0.2196 57 0.8387 | 0.8418 | 0.8450
13 0.2250 | 0.2306 | 0.2363 58 0.8480 | 0.8511 | 0.8542
14 0.2419 0.2476 | 0.2532 59 0.8572 | 0.8601 | 0.8631
15 0.2588 0.2644 | 0.2700 60 0.8660 | 0.8689 | 0.8718
16 0.2756 0.2812 | 0.2868 61 0.8746 | 0.8774 | 0.8802
17 0.2924 0.2979 | 0.3035 62 0.8829 | 0.8857 | 0.8884
18 0.3090 0.3145 | 0.3201 63 0.8910 | 0.8936 | 0.8962
19 0.3256 0.3311 | 0.3365 64 0.8988 | 0.9013 | 0.9038
112
20 0.3420 0.3475 | 0.3529 65 0.9063 | 0.9088 | 0.9
21 0.3584 0.3638 | 0.3692 66 0.9135 | 0.9159 0.318%
22 0.3746 0.3800 | 0.3854 67 0.9295 0.9228 | 0. 255
23 0.3907 0.3961 | 0.4014 68 0.9272 | 0.9293 | 0.931
24 0.4067 0.4120 | 0.4173 69 0.9336 | 0.9356 | 0.9377
.9436
25 0.4226 0.4279 | 0.4331 70 0.9397 | 0.9417 | O
26 0.4384 0.4436 | 0.4488 71 0.9455 | 0.9474 0.9%2%
27 0.4540 0.4592 | 0.4643 72 0.9541 | 0.9528 0'3596
28 0.4695 0.4746 | 0.4797 73 0.9563 | 0.9580 | O. 2oe
29 0.4848 0.4899 | 0.4950 74 0.9613 | 0.9628 | 0.9644
.9689
30 0.5000 0.5050 | 0.5100 75 0.9659 | 0.9674 | O
31 0.5150 0.5200 | 0.5250 76 0.9703 | 0.9717 0.972(9)
32 0.5299 0.5348 | 0.5398 71 0.9744 | 0.9757 0.3;05
33 0.5446 0.5495 | 0.5544 78 0.9781 | 0.9793 0'9838
34 0.5592 0.5640 | 0.5688 79 0.9816 | 0.9827 } O.
.9863
35 0.5736 0.5783 | 0.5831 80 0.9848 | 0.9858 | O
36 0.5878 0.5925 | 0.5972 81 0.9877 | 0.9886 Oggiﬂé
37 0.6018 0.6065 | 0.6114 82 0.9903 | 0.9914 0.9939
38 0.6157 0.6202 | 0.6248 83 0.9925 | 0.9932 8.9957
39 0.6293 0.6338 | 0.6383 84 0.9945 | 0.9951 .
9971
40 0.6428 0.6472 | 0.6547 85 0.9962 | 0.9967 | 0
41 0.6561 0.6604 | 0.6648 86 0.9976 | 0.9980 88833
42 0.6691 0.6734 | 0.6777 81 0.9986 | 0.9989 g
43 0.6820 0.6862 | 0.6905 88 0.9994 | 0.9996 O.0 4
44 0.6947 0.6988 | 0.7030 89 0.9998 | 0.9999 | 1.00

366

@° 0’ 20’ 40’ @° 0’ 20’ 40’
0 0.0000 { 0.0058 | 0.01416 45 1.0000| 1.042 1.024
1 0.0175 | 0.0233 | 0.0291 46 1.036 1.048 1.080
2 0.0349 | 0.0407 | 0.0466 47 1.072 1.085 1.098
3 0.0524 | 0.0582 | 0.0641 48 1.411 1.124 1.437
4 0.0699 | 0.0758 | 0.0816 49 1.150 1.164 1.178
5 0.0875 | 0.0934 ;| 0.0992 50 1.192 1.206 1.220
6 0.1051 { 0.1110 | 0.14169 51 1.235 1.250 1.265
1 0.1228 | 0.1287 | 0.1346 52 1.280 1.295 1.314
8 0.1405 | 0.1465 | 0.1524 53 1.327 1.343 1.360
9 0.1584 | 0.1644 | 0.1703 54 1.376 1.393 1.411
10 0.1763 | 0.4823 | 0.4883 55 1.428 1.446 1.464
11 0.1944 | 0.2004 | 0.2065 56 1.483 1.501 1.520
12 0.2126 | 0.2186 | 0.2247 57 1.540 1.560 1.580
13 0.2309 | 0.2370 | 0.2432 58 1.600 1.621 1.643
14 0.2493 | 0.2555 | 0.2647 59 1.664 1.686 1.709
15 0.2679 | 0.2742 | 0.2805 60 1.732 1.756 1.780
16 0.2867 | 0.2931 | 0.2994 61 1.804 1.829 1.855
17 0.3057 | 0.3121 | 0.318 62 1.884 1.907 1.935
18 0.3249 | 0.3344 | 0.3378 63 1.963 1.991 2.020
19 0.3443 | 0.3508 | 0.3574 64 2.050 2.081 2.142
20 0.3640 | 0.3706 | 0.3772 65 2.445 2.4717 2.211
21 0.3839 | 0.3906 | 0.3973 66 2.246 2.282 2.318
22 0.4040 | 0.4408 | 0.4176 67 2.356 2.394 2.434
23 0.4245 | 0.4314 | 0.4383 68 2.475 2.517 2.560
24 0.4452 | 0.4522 | 0.4592 69 2.605 2.651 2.699
25 0.4663 | 0.4734 | 0.4806 70 2.747 2.798 2.850
26 0.4877 | 0.4950 | 0.5022 (k! 2.904 2.960 3.018
27 0.5095 | 0.5169 | 0.5243 72 3.078 3.440 3.204
28 0.5317 | 0.5392 | 0.5467 73 3.271 3.340 3.412
29 0.5543 | 0.5619 | 0.5696 74 3.487 3.566 3.647
30 0.5774 | 0.5851 | 0.5930 75 3.732 3.821 3.914
31 0.6009 | 0.6088 | 0.6168 76 4.011 4113 4.219
32 0.6249 | 0.6330 | 0.6412 77 4.331 4.449 4.574
33 0.6494 | 0.6577 | 0.6661 78 4.705 4.843 4.989
34 0.6745 | 0.6830 | 0.6916 79 5.145 5.309 5.485
35 0.7002 | 0.7089 | 0.7177 80 5.671 5.87 6.084
36 0.7265 | 0.7355 | 0.7445 81 6.314 6.561 6.827
37 0.7536 | 0.7627 | 0.7720 82 7.415 7.429 7.770
38 0.7843 | 0.7907 | 0.8002 83 8.144 8.556 9.010
39 0.8098 | 0.8195 | 0.8292 84 9.514 | 10.08 10.71
40 0.8391 | 0.8491 | 0.8591 85 11.43 12.25 13.20
41 0.8693 | 0.8796 | 0.8899 86 14.30 15.60 17.47
42 0.9004 | 0.9110 | 0.9217 87 19.08 21.47 24.54
43 0.9325 | 0.9435 | 0.9545 88 28.64 34.37 42.96
44 0.9657 | 0.9770 | 0.9884 89 57.29 85.94 171.9
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4, Common Logarithms

N 0 1 2 3 & 5 6 7 8 9

10 | 0000 | 0043 | 0086 | 0128 | 0170 | 0212 | 0253 | 0294 | 0334 | 0374
11 | 0414 | 0453 | 0492 | 0531 | 0569 | 0607 | 0645 | 0682 | 0719 | 0755
12 | 0792 | 0828 | 0864 | 0899 | 0934 | 0969 | 4004 | 1038 ; 1072 | 1106
13 | 1139 | 1173 | 1206 | 1239 | 1271 | 1303 | 1335 | 1367 | 1399 | 1430
14 | 1461 | 1492 | 1523 | 1553 | 1584 | 1614 | 1644 | 1673 | 1703 | 4732
15 | 1761 { 1790 | 1818 | 1847 | 1875 | 1903 | 1931 | 1959 | 1987 | 2014
16 | 2041 | 2068 | 2095 | 2122 | 2148 | 2175 | 2201 | 2227 | 2253 | 2279
17 | 2304 | 2330 | 2355 | 2380 | 2405 | 2430 | 2455 | 2488 | 2504 | 2529
18 | 2553 | 2577 | 2601 | 2625 | 2648 | 2672 | 2695 | 2748 | 2742 | 2765
19 | 2788 | 2810 | 2833 | 2856 | 2878 | 2900 | 2923 | 2945 | 2967 | 2989
20 | 3010 | 3032 | 3054 | 3075 | 3096 | 3148 | 3139 | 3160 | 3181 [ 3201
21 | 3222 | 3243 | 3263 | 3284 | 3304 | 3324 | 3345 | 3365 | 3385 | 3404
22 | 3424 | 3444 | 3464 | 3483 | 3502 | 3522 | 3541 | 3560 | 3579 | 3598
23 | 3617 | 3636 | 3655 | 3674 | 3692 | 3741 | 3729 | 3747 | 3766 | 3784
24 | 3802 | 3820 | 3838 | 3856 | 3874 | 3892 | 3909 | 3927 | 3945 | 3962
25 | 3979 | 3997 | 4014 | 4031 | 4048 | 4065 | 4082 | 4099 | 4146 | 4433
26 | 4150 | 4166 | 4183 | 4200 | 4216 | 4232 | 4249 | 4265 | 4381 | 4298
27 | 4314 | 4330 | 4346 | 4362 | 4378 | 4303 | 4409 | 4425 | 4440 | 4456
28 | 4472 | 4487 | 4502 | 4518 | 4533 | 4548 | 4564 | 4579 | 4594 | 4609
29 | 4624 | 4639 | 4854 | 4669 | 4683 | 4698 | 4743 | 4728 | 4742 | 4757
30 | 4771 | 4786 | 4800 | 4814 | 4829 | 4843 | 4857 | 4871 | 4886 | 4900
31 | 4914 | 4028 | 4942 | 4955 | 4969 | 4983 | 4997 ! 5011 | 5024 | 5038
32 | 5051 | 5065 | 5079 | 5092 | 5105 | 5119 | 5132 | 5145 | 5459 | 5172
33 | 5185 | 5198 | 5211 | 5224 | 5237 | 5250 | 5263 | 5276 | 5289 | 5302
34 | 5315 | 5328 | 5340 | 5353 | 5366 | 5378 | 5391 | 5403 | 5416 | 5428
35 | 544l | 5453 | 5465 | 5478 | 5490 | 5502 | 5544 | 5527 | 5539 | 5551
36 | 5563 | 5575 | 5587 | 5599 | 5641 | 5623 | 5635 | 5647 | 5658 | 5670
37 | 5682 | 5694 | 5705 | 5747 | 5729 | 5740 | 5752 | 5763 | 5775 | 5786
38 | 5798 | 5809 | 5821 | 5832 | 5843 | 5855 | 5866 | 5877 | 5888 | 5899
39 | 5911 | 5922 | 5933 | 5944 | 5955 | 5966 | 5977 | 5988 | 5999 | 6010
40 | 6024 | 6031 | 6042 | 6053 | 6064 | 6075 | 6085 | 6096 | 6107 | 6447
41 | 6128 | 6438 | 6149 | 6160 | 6470 | 6180 | 6191 | 6204 | 6212 | 6222
42 | 6232 | 6243 | 6253 | 6263 | 6274 | 6284 | 6294 | 6304 | 6314 | 6325
43 | 6335 | 6345 | 6355 | 6365 | 6375 | 6385 | 6395 | 6405 | 6415 | 6425
44 ) 6435 | 6444 | 6454 | 6464 | 6474 | 6484 | 6493 | 6503 | 6513 | 6522
45 | 6532 | 6542 | 6551 | 6564 | 6571 | 6580 | 6590 | 6599 | 6609 | 6618
46 | 6628 | 6637 | 6646 | 6656 | 6665 | 6675 | 6684 | 6693 | 6702 | 6712
47 | 6721 | 6730 | 6739 | 6749 | 6758 | 6767 | 6776 | 6785 | 6794 | 6803
48 | 6812 | 6821 | 6830 | 6839 | 6848 | 6857 | 6866 | 6875 | 6885 | 6893
49 | 6902 | 6911 | 6920 | 6928 | 6937 | 6946 | 6955 | 6964 | 6972 | 6981
50 | 6990 | 6998 | 7007 | 7016 | 7024 | 7033 | 7042 | 7050 | 7059 | 7067
54 | 7076 | 7084 | 7093 | 7101 | 7410 | 7448 | 7426 | 7135 | 7443 | 7452
52 | 7460 | 7468 | 7477 | 7485 | 7493 | 7202 | 7210 | 7218 | 7226 | 7235
53 | 7243 | 7251 | 7259 | 7267 | 7275 | 7284 | 7292 | 7300 | 7308 | 7316
54 | 7324 | 7332 | 7340 | 7348 | 7356 | 7364 | 7372 | 7380 | 7388 | 7396
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(Continued)

N 0 1 2 3 & 5 6 7 8 9

55 | T404 | 7442 | TA19 | 7427 | 7435 | 7443 | 7451 | 7459 | 7466 | 7475
56 | 7482 | 7490 | 7497 | 7505 | 7543 | 7520 | 7528 | 7536 | 7543 | 7551
57T | 7559 [ 7566 | 7574 | 7582 | 7589 | 7597 | 7604 | 7642 | 7619 | 7627
58 | 7634 | 7642 | 7649 | 7657 | 7664 | 7672 | 7679 | 7686 | 7694 | 7701
59 | 7709 | 7746 | 7723 | 7731 [ 7738 | 7745 | 7752 | 71760 | 7767 | 7774
60 1 7782 | 7789 | 7796 | 7803 | 7840 | 7818 | 7825 | 7832 | 7839 | 7846
61 | 7853 | 7860 | 7868 | 7875 | 7882 | 7889 | 7896 | 7903 | 7910 | 7947
62 | 7924 | 7931 | 7938 | 7945 | 7952 | 7959 | 7966 | 7973 | 7980 | 7987
63 | 7993 | 8000 | 8007 | 8044 | 8021 | 8028 | 8035 | 8041 | 8048 | 8055
64 | 8062 | 8069 | 8075 | 8082 | 8089 | 8096 | 8102 | 8109 | 8116 | 8122
65 | 8129 | 8436 | 8142 | 8149 | 8156 | 8162 | 5169 | 8176 | 8182 | 8189
66 | 8195 | 8202 | 8209 | 8215 | 8222 | 8228 | 8235 | 8241 | 8248 | 8254
67 | 8261 | 8267 | 8274 | 8280 | 8287 | 8293 | 8299 | 8306 | 8312 | 8319
68 | 8325 | 8331 | 8338 | 8344 | 8351 | 8357 | 8363 | 8370 | 8376 | 8382
69 | 8388 | 8395 | 8401 | 8407 | 8414 | 8420 | 8426 | B432 | 8439 | 8445
70 | 8451 | 8457 | 8463 | 8470 | 8476 | 8482 | 8488 | 8494 | 8500 | 8506
71 8513 | 8549 | 8525 | 8531 | 8537 | 8543 | 8549 | 8555 | 8561 | 8567
72 | 8573 | 8579 | 8585 | 8591 | 8597 | 8603 | 8609 | 8615 | 8621 | 8627
73 | 8633 | 8639 | 8645 | 8651 | 8657 | 8663 | 8669 | 8675 | 8681 | 8686
7h | 8692 | 8698 | 8704 | 8710 | 8716 | 8722 | 8727 | 8733 | 8739 | 8745
75 | 8751 | 8756 | 8762 | 8768 | 8774 | 8779 | 8785 | 8791 | 8797 | 8802
76 | 8308 | 8814 | 8820 | 8825 | 8831 | 8837 | 8842 | 8848 | 8854 | 8859
77 | 8865 | 8871 | 8876 | 8882 | 8887 | 8893 | 8899 | 8904 | 8910 | 8915
78 | 8921 | 8927 | 8632 | 8938 | 8943 | 8949 | 8954 | 8960 | 8965 | 8971
79 | 8976 | 8982 | 8987 | 8993 | 8998 | 9004 | 9009 | 9045 | 9020 | 9025
80 | 9031 | 9036 | 9042 | 9047 | 9053 | 9058 | 9063 | 9069 | 9074 | 9079
81 9085 | 9090 | 9096 | 9101 | 9106 | 9112 | 9447 | 9122 | 9128 | 9133
82 19138 | 9143 | 9149 | 9154 | 9459 | 9165 | 9170 | 9175 | 9180 | 9186
83 | 9191 | 9196 | 9201 | 9206 | 9212 | 9217 | 9222 | 9227 | 9232 | 9238
84 | 9243 | 9248 | 9253 | 9258 | 9263 | 9269 | 9274 | 9279 | 9284 | 9289
853 9294 | 9299 | 9304 | 9309 | 9315 9320 | 9325 | 9330 | 9335 | 9340
86 | 9345 | 9350 | 9355 | 9360 | 9365 | 9370 | 9375 | 9380 | 9385 | 9390
87 | 9395 | 9400 | 9405 | 9410 | 9415 | 9420 | 9425 | 9430 | 9435 | 9440
83 | 9445 | 9450 | 9455 | 9460 | 9465 | 9469 | 9474 | 9479 | 9484 | 9489
89 | 0404 | 0409 | 9504 | 9509 | 9543 | 9518 | 9523 | 9528 | 9533 | 9538
90 1 9542 | 9547 | 9552 | 9557 | 9562 | 9566 | 9571 | 95/6 | 9581 | 9586
91 [ 9590 | 9595 | 9600 | 9605 | 9609 | 9614 | 9610 | 9624 | 9628 | 9633
92 | 9638 | 9643 | 9647 | 9652 | 9657 | 9661 | 9666 | 9671 | 9675 | 9680
93 | 9685 | 9689 | 9694 | 9699 | 9703 | 9708 | 9713 | 9717 | 8722 | 9727
94 | 9731 | 9736 | 9741 | 9745 | 9750 | 9754 | 9759 | 9763 | 9768 ; 9773
95 | 9777 | 9782 | 9786 | 9791 | 9795 | 9800 | 9805 | 9809 | 9814 | 9818
96 | 9823 | 9827 | 9832 | 9836 | 9841 | 9845 | 9850 | 9854 | 9859 | 9863
97 19868 | 9872 | 9877 | 9881 | 9886 | 9890 | 9894 | 9899 | 9903 | 9908
98 | 9912 | 9917 | 9921 | 9926 | 9930 | 9934 | 9939 | 9943 | 9948 | 9952
99 | 9956 | 9961 | 9965 | 9969 | 9974 | 9978 | 9983 | 9987 | 9991 | 9996
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. Exponential Functions

—X

0.00
0.05
.10
.15
.20
.25
.30
.35
.40
.45
.50

.60
.65
.70
.75
.80
.85
.90
.95
.00
05
.10
15
.20

.30
.35
.40
.45
.50
.55
.60
.65
.70
.75
.80
.85
.90
.95
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1.0000
1.0513
1.1052
1.1618
1.2214
1.2840
1.3499
1.4191
1.4918
1.5683
1.6487
1.7333
1.8221
1.9155
2.0138
2.1170
2.2255
2.3396
2.4596
2.5857
2.7183
2.8577
3.0042
3.1582
3.3201
3.4903
3.6693
3.8574
4.0552
4.2631
4.4817
4.7115
4.9530
5.2070
5.4739
5.7546
6.0496
6.3598
6.6859
7.0287

1.0000
0.9542
0.9048
0.8607
0.8187
0.7788
0.7408
0.7047
0.6703
0.6376
0.6065
0.5770
0.5488
0.5221
0.4966
0.4724
0.4493
0.4274
0.4066
0.3867
0.3679
0.3499
0.3329
0.3166
0.3012
0.2865
0.2725
0.2592
0.2466
0.2346
0.2231
0.2123
0.2019
0.1921
0.1827
0.4738
0.1653
0.1572
0.1496
0.1423

2.00
2.05
2.10
2.15
2.20
2.25
2.30
2.35
2.40
2.45
2.50
2.55
2.60
2.65
2.70
2.75
2.80
2.85
2.90
2.95
3.00
3.05
3.10
3.15
3.20
3.25
3.30
3.35

W W w
[ S
D o

O W W WL w
[ w o N oW

7.3891
7.7679
8.1662
8.5849
9.0250
9.4877

11

12.
12.
.464

13

14.
14.
15.
16.
17.
18.
19.
20.
21.
22.
.336
24,
25,
27.
.503
29.
31.
33.

L9742
10.
1.
.588

486
023

182
807

154
880
643
445
288
174
106
086
115
198

533
790
113

964
500
115

34.813
36.598
38.475
40.447
42.521
44.701
46.993
49.402
51.935

0.1353

0.1287

0.1225

0.1165

0.1108

0.4054

0.1003

0.09537
0.09072
0.08629
0.08208
0.07808
0.07427
0.07065
0.06721
0.06393
0.06081
0.05784
0.05502
0.05234
0.04979
0.04736
0.04505
0.04285
0.04076
0.03877
0.03688
0.03508
0.03337
0.03175
0.03020
0.02872
0.02732
0.02599
0.02472
0.02352
0.02237
0.02128
0.02024
0.01925
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(Continued)
x eX e~ x e e

4.00 54.598 0.01832 6.0 403.43 0.00248
4.05 57.397 0.01742 6.1 445 .86 0.00224
4.10 60.340 0.01657 6.2 492.75 0.00203
4.15 63.434 0.01576 6.3 544.57 0.00184
4.20 66.686 0.01500 6.4 601.85 0.00166
4.25 70.105 0.01426 6.5 665.14 0.001503
4.30 73.700 0.01357 6.6 735.40 0.001360
4.35 77.478 0.01991 6.7 812.41 0.001231
4.40 81.451 0.01228 6.8 897.85 0.001114
4.45 85.627 0.01168 6.9 992.27 0.001008
4.50 90.017 0.01111 7.0 1096.6 0.000912
4.55 94.632 0.01057 7.1 1212.2 0.000825
4.60 99.484 0.01005 7.2 1339.4 0.000747
4.65 104.58 0.00956 7.3 1480.5 0.000676
4.70 109.95 0.00910 7.4 1636.0 0.000611
4.75 115.58 0.00865 7.5 1808.0 0.000553
4.80 121.51 0.00823 7.6 1998.2 0.000500
4.85 127.74 0.00783 7.7 2208.3 0.000453
4.90 134.29 0.00745 7.8 2440.6 0.000440
4.95 141 .17 0.00708 7.9 2697.3 0.000371
5.00 148.41 0.00674 8.0 2981.0 0.000335
5.05 156.02 0.00641 8.1 3294.5 0.000304
5.10 164.02 0.00610 8.2 3641.0 0.000275
5.15 172.43 0.00580 8.3 4023.9 0.000249
5.20 181.27 0.00552 8.4 4447 .14 0.000225
5.25 190.57 0.00525 8.5 4914.8 0.000203
5.30 200.34 0.00499 8.6 5431.7 0.000184
5.35 210.64 0.00475 8.7 6002.9 0.000167
5.40 221.44 0.00452 8.8 6634.2 0.000151
5.45 232.76 0.00430 8.9 7332.0 0.000136
5.50 244.69 0.00409 9.0 8103.1 0.000123
5.55 257.24 0.00389 9.1 8955.3 0.000112
5.60 270.43 0.00370 9.2 9897.1 0.000101
5.65 284.29 0.00352 9.3 10938 0.000091
5.70 298.87 0.00335 9.4 12088 0.000083
5.75 314.19 0.00318 9.5 13360 0.000075
5.80 330.30 0.00303 9.6 14765 0.000068
5.85 347.23 0.00288 9.7 16318 0.000061
5.90 365.04 0.00274 9.8 18034 0.000055
5.95 383.75 0.00261 9.9 19930 0.000050

10.0 22026 0.000045
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6. Greek Alphabet

9. Derivatives and Integrals

Function Derivative Function Derivative Function Derivative
_ . 1
zn nxn-1 sin z cos z arcsin z ——
1 1 cos z —sinz Vi—z
z z? tan z 1 arccos z —'—‘—‘“L——
1 n cos? z V1i—z2
T T 1 ; 1
cot z - arctan z T
Vi 1 t sin® z 1422
X = 7 1
- u
2V'z Vu = arccot z Tz
ex ex 2V u b
enx nenx u’ sinh z cosh z
ax e*lna Inu u_ cosh z sinh z
1
1 u vu'—v'u —_—
oz = — . tanh z cosh?z
x v v 1
coth z T sinhfz
xn+1 dz
ndr=—= n=+—1) 3 =tanz
n+1 cos? z
x dx
S—-—-:lnx ——— =—cotz
z sin? z
Ssinzdz:—-cosx Sexd:c=ex
. dx
cosrdx—=sinz ———— =—grctanz
1+ z3
dx .
tanzdzx= —Incos z ———— =arcsinz
l/ 1—22

Scot:cdx=1nsinx ;

Integration by parts: Sudv = uv— Svdu

S'l—/-%;— In (z+ V z3—1)

Some Definite Integrals

A, a—alpha I. 1—iota P, p—rho
B, B—beta K, x—kappa 2, o—sigma
I, y—gamma A, A—lambda T, T—tau
A, 6—delta M, u—mu Y, v—upsilon
E, ¢—epsilon N, v—nu @, ¢— phi
Z, [—zeta 2, E—xi X, y—chi
H, n—eta 0, o—omicron ¥, }p— psi
6, 0—theta I, n—pi Q, w— omega
7. Numerical Constants and Approximations
Numerical constants Approximate formulas (for @ < 1)
n=3.1416 lxta)*~1tna
n2=9.8696 e“x1+ta
YV n=1.7125 In(14a)~a
e=2.7183 sina =«
log e = 0.4343 cosa =~ 1—a?/2
In 10=2.3026 tana ~ o
8. Some Data on Vectors
a(bJ-c)=ab+ac [a, b+ c|=[ab] +[ac]
ab=axby+ayb,+ab, [a [be]l=Db (ac)—e (ab)
i j k
[ab]=|ay ay o, |=(ayb,—a;by) i+(a;bx—azb,)j+ (axby—ayby) k
x Yy Oz
da db d da , . db
T @Tb=g+gp @b =gp btagy
d da da

£ =204+ 2]
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. 1L n=0 - [ 1/2‘/;1’ n=0
1 — =

Sx...,-x dee |tV m n=1/2 S’" emape | M2
; 1, n=1 ; L YV, n=2
2, n=2 12, n=3

2.31, n=1/2 0.225, a=1

% n2/6, n=1 a 1.18, a=2

T4z _ 19,405, n=2 242 _ ) 256 0=3

eXx—1 . ex—1

3 n4/15, n=3 b 4.91, o=35

2%.9, n=4 6.43, a=10
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10. Astronomical Data

moay | MO | o ke | Memdemity | Beried of rotation
Sun 6.9 1.97.1030 1.41 25.4
Earth 6.3 5.96.1024 5.52 1.00
Moon 1.7 7.30.1022 3.30 27.3
Planets of solar system Mean gff,ff“}%% '{,‘;,"‘ the Siderial period, years
Mercury 57.87 0.241
Venus 108.14 0.615
Earth 149.50 1.000
Mars 227.79 1.881
Jupiter 771.8 11.862
Saturn 1426.1 29.458
Uranus 2867.7 84.013
Neptune 4494 164.79

11. Density of Substances
Solids p, g/cm3 Liquids p, g/cm?

Diamond 3.5 Benzene 0.88
Aluminium 2.7 Water 1.00
Tungsten 19.1 Glycerin 1.26
Graphite 1.6 Castor oil 0.90
Iron (steel) 7.8 Kerosene 0.80
Gold 19.3 Mercury 13.6
Cadmium 8.65 | Alcohol 0.79
Cobalt 8.9 Heavy water 1.1
Ice 0.916 | Ether 0.72
Copper 8.9 | Gases (under standard condi- [p, kg/m3
Molibdenum 10.2 tions) '
Sodium 0.97 [ Nitrogen 1.25
Nickel 8.9 Ammonia 0.77
Tin 7.4 Hydrogen 0.09
Platinum 21.5 Air 1.293
Cork 0.20 | Oxygen 1.43
Lead 11.3 Methane 0.72
Silver 10.5 Carbon dioxide 1.98
Titanium 4.5 Chlorine 3.21
Uranium 19.0
Porcelain 2.3
Zinc 7.0
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12. Thermal Expansion Coefficients

(at room temperatures)

Linear expansion Buik expansion
Solids coefficient; o, Liquids coefficient: B,
10-6 X-1 10-4 K-1
Aluminium 22.9 Water 2.1
Brass 18.9 Glycerin 5.0
Copper 16.7 Kerosene 10.0
Steel (iron) 11 Mercury 1.8
Common glass 8.5 Ethyl alcohol 11.0
1 al 1 av
Note. G.——i—-é-f, ﬁ—T/‘——-aT

13. Elastic Constants. Tensile Strength

) Young’s Shear Poisson’ Tensile Compressibil-
Material modulus £, | modulus ratio m 5“0"3;‘; O | Sy B
Aluminium 70 26 0.34 0.10 0.014
Copper 130 40 0.34 0.30 0.007
Lead 16 5.6 0.44 0.015 0.022
Steel (iron) 200 84 0.29 0.60 0.006
Glass 60 30 0.25 0.05 0.025
Water — — — — 0.49
Note. Compressibility p— —— 27
Note. mp S Y = 7 ap
14. Saturated Vapour Pressure
oC Pre:ls)l;re, oc Pre:ls);re, o Prelfls)\;re,
0 0.61 25 3.15 60 19.9
5 0.87 30 4.23 70 31.0
10 1.22 35 5.60 80 47.3
15 1.70 40 7.35 90 70.0
20 2.33 50 12.3 100 101.3
37
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15. Gas Constants
(under standard conditions)

Van der Waals
Heat con- Molecular constants
Relative Cp | ductivity | Viscosity dfa-
Gas |molecular| v = &= mW |1, uPa-s meter
mass v ®, m- K d, nm atm-12 b 1
' mol2 ' ‘mol
He 4 1.67 141.5 18.9 0.20 _ —
Ar 40 1.67 16.2 221 0.35 1.30 0.032
H, 2 1.4 168.4 8.4 0.27 0.24 0.027
Ny 28 1.40 24.3 16.7 0.37 1.35 0.039
0, 32 1.40 24.4 19.2 0.35 1.35 0.032
CO, 44 1.30 23.2 14.0 0.40 3.62 0.043
H,0 18 1.32 15.8 9.0 0.30 5.47 0.030
Air 29 1.40 24.1 17.2 0.35 —_ _
Note. This table quotes the mean values of molecular diameters.
When performing more accurate calculations, it should be remembered
that the values of d obtained from the coefficients of viscosity, heat
conductivity, and diffusion, as well as the Van der Waals constant b,
differ perceptibly from one another.

16. Some Parameters of Liquids and Solids

Substance S%Z?::itt;e’?t \Srgggirfll:a}txle:rs B’E Specrixflglt?zgt of tfrlllsrift?rfe*
c, T K q, J/g q, J/g a, mN/m
Water 4.18 2250 — 73
Glycerin 2.42 — — 66
Mercury 0.14 284 — 490
Alcohol 2.42 853 — 22
Aluminum 0.90 — 321 —
Iron 0.46 — 270 —
Ice 2.09 — 333 —
Copper 0.39 — 175 —
Silver 0.23 — 88 —
Lead 0.13 — 25 —
* Under standard conditions.
** nder standard atmospheric pressure.
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17. Permittivities
(relative values)

Dielectric € Dielectric €
Water 81 Mica 7.5
Air 1.00058 Alcohol 26
Kerosene 2.0 Glass 6.0
Paraffin 2.0 Porcelain 6.0
Plexiglas 3.5 Ebonite 2.7
Polyethylene 2.3

18. Resistivities of Conductors

Conductor Resist:)\:i:l);zfrant 20 °C) Temper%f'ur: c_olefncient
Aluminium 25 4.5
Tungsten 50 4.8
Iron 90 6.5
Gold 20 4.0
Copper 16 4.3
Lead 190 4.2
Silver 15 4.1

19. Magnetic Susceptibilities of Para- and Diamagnetics
Paramsatgrr:gtelc sub- w-1, 10-8 Diamz ;(:.gc sub- w1, 10-8
Nitrogen 0.013 Hydrogen —0.063
Air 0.38 Benzene —7.5
Oxygen 1.9 Water —9.0
Ebonite 14 Copper —10.3
Aluminium 23 Glass —12.6
Tungsten 176 Rock-salt —12.6
Platinum 360 Quartz —15.1
Liquid oxygen 3400 Bismuth —176
25—9451 371



20. Refractive Indices

Substance n Substance n
Air 1.00029 Glass 1.50
Water 1.33 Diamond 2.42

Note. Since the refractive indices are known to depend on the nature

of the substanc

o and the wavelength of light, the values of n listed here
should be regarded as conditional.

Iceland spar Quartz
Wavelength A, nm Colour
e "o Te "o
687 red 1.484 1.653 1.550 1.541
656 orange 1.485 1.655 1.551 1.542
589 yellow 1.486 1.658 1.553 1.544
527 green 1.489 1.664 1.556 1.547
486 blue 1.491 1.668 1.559 1.550
431 indigo 1.495 1.676 1.564 1.554
400 violet 1.498 1.683 1.568 1.558

21. Rotation of the Plane of Polarization
Natural rotation in quartz (the thickness of the plate ts 1 mm)

A, nm @, deg A, nm @, deg A, nm @, deg
199.0 295.65 344 1 70.59 589.5 24.72
217.4 226.94 372.6 58.89 656.3 17.32
249.4 220.7 404.7 48.93 670.8 16.54
257.1 143.3 435.9 41.54 1040 6.69
274.7 1211 491.6 31.98 1450 3.4
328.6 78.58 508.6 29.72 1770 2.28

Magnetic Rotation (A=589 nm). The Verdet Constant V:

Liquid Vv, ang. oin/A Liquid Vv, ang. min/A
Benzene 2.59 Carbon disulphide 0.053
Water 0.016 Ethyl alcohol 1.072
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22, Work Function of Various Metals

Metal A, eV Metal A, eV Metal A, eV
Alu'minium 3.74 Gold 4.58 Potassium 2.15
Bz.mum 2.29 Iron 4.36 Silver 4'28
Blsx.nuth 4.62 Lithium 2.39 Sodium 2.27
Cesium 1.89 Molybdenum 4.27 Titanium 3. 92
Cobalt 4.25 Nickel 4.84 Tungsten 4:50
Copper 4.47 Platinum 5.29 Zinc 3.7

23. K Band Absorption Edge
V4 Element Ag. pm z Element 7‘K' pm
23 v 226.8 47
. Ag 48.6

26 Fe 174.4 50 Sn 42, 38

27 C(.) 160.4 74 w 17.85

28 Ni 148.6 78 Pt 15.85

29 Cu 138.0 79 Au 15.35

30 Zn 128.4 82 Pb 14.05

42 Mo 61.9 92 U 10.75

24. Mass Absorption Caefficients
(X-ray radiation, narrow beam)
Mass absorption coefficient n/p, cm2/g
A, pm
Air Water Aluminium Copper Lead

10 0.16 0.16 0.36 3.8

20 0.18 0.28 1.5 4.9

30 0.29 0.47 4.3 14

40 0.44 1.4 9.8 AN

50 0.48 0.66 2.0 19 54

60 0.75 1.0 3.4 32 90

70 1.3 1.5 5.4 48 139

80 1.6 2.1 7.4 70

90 24 2.8 11 98

100 2.6 3.8 15 131
150 8.7 12 46 49
200 21 28 102 108
250 39 51 194 198
25+%
379




25. Ionization Potentials of Atoms

2z Atom Ionizatlg}r’l sotential z Atom Ionizatigr'l sotential

1 H 13.59 7 N 14.54

2 He 24.58 8 (@) 13.62

3 Li 5.39 9 F 17.42

4 Be 9.32 10 Ne 21.56

5 B 8.30 11 Na 5.14

6 C 11.27 80 Hg 10.44

26. Mass of Light Atoms

Excess of mass Exce?s cif mass
a

z Isotope A _ngltao."‘rl‘.u. z Isotope A, o s gfrrln.u.

0 n 0.00867 6 cu 0.01143

1 Ht 0.00783 cia 0
H? 0.01410 cL 0.00335
H3 0.01605 7 N3 0.00574

2 He? 0.01603 N1 0.00307
Het 0.00260 Nis 0.00011

3 Lié 0.01513 8 o1s 0.00307
Li? 0.01601 Q18 —0.00509

4 Be? 0.01693 ov —0.00087
Bet 0.00531 9 F19 —0.00160
Be? 0.01219 10 Ne2? —0.00756
Bet? 0.01354 11 Na23 —0.01023

5 Bto 0.04294 Na2* —0.00903
Bu 0.00930 12 Mg —0.01496

Note. Here 4, is the relative atomic mass (in am.u.), 4 is the

mass number.

97. Half-Life Values of Radionuclides

4 Isotope Kind of decay Half-life

27 Cobalt Cob? g 5.2 years

38 Strontium Sr®® g 28 years

84 Polonium Po?!0 a 138 days

86 Radon Rn222 o 3.8 days

88 Radium Ra2?2¢ o 1620 years
92 Uranium U288 o 4.5.109 years
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28. Units of Physical Quantities
Names and symbols of certain quantities

A, ampere
a.m.u., atomic
mass unit

B, bel

b, barn

C, coulomb

cd, candela

D, diopter

dyn, dyne

eV, electron-volt
F, farad

G, gauss

g, gram

H, henry

h, hour

Hz, hertz

J, joule

K, kelvin

1, litre

Im, lumen
1x, lux

m, metre
min, minute
mol, mole
Mx, maxwell
N, newton

Oe, oersted
Q, ohm

P, poise
Pa. pascal
rad, radian
S, siemens
s, second
sr, steradian
St, stokes
T, tesla
V, volt
W, watt
Wb, weher

Decimal Prefixes

Factor Name of prefix Symbol Factor Name of prefix Symbol
1012 tera- T 10-2 centi- c
10° giga- G 10-3 milli- m
108 mega- M 10-8 micro- n
103 kilo- k 10-9 nano- n
102 hecto- h 10-12 pico- P

10 deca- da 1018 femto- f
1071 deci- d 1018 atto- a

SI and CGS Units

Physical quantity Name of unit Conversion factor
S1 , CGS “1 ST unit/1 CGS unit
Length m cm 100
Time S s 1
Velocity m/s cm/s 100
Acceleration m/s? cm/s? 100
Oscillation frequency Hz H:z 1
Angular velocity rad/s rad/s 1
Angular frequency g -1 §-1 1
Mass kg g 108
Density kg/m? g/cm3 10-3
Force N dyn 108
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(Continued)

Name of unit

Physical quantity

Conversion factor
1 8I unit/1 CGS unit

SI ] CGS
Pressure, stress Pa dyn/cm?2 10
Momentum kg-m/s g-cm/s 100
Moment of force N-m dyn-cm 107
Energy, work J erg 107
Power w erg/s 107
Energy flux density W/m? erg/(s-cm?) 108
Angular momentum kg-m?/s g-cm3/s 107
Moment of inertia kg.m?2 g-cm? 107
Dynamic viscosity Pa-s P 10
Temperature K K 1
Heat capacity, entropy J/K erg/K 107
Electric charge C CGSE unit 3-109
Potential A% CGSE unit 1/300
Electric field strength V/m CGSE unit 1/(3-10%)
Electric induction C-m? CGSE unit 12m-10°
Electric dipole moment C/m CGSE unit 3.101
Electric polarization C/m? CGSE unit 3-10°
Capacity F cm 9.10u
Current . A CGSE unit 3.10°
Current density A/m? CGSE unit 3.10°
Resistance Q CGSE unit 1/(9-1011)
Resistivity Q.m CGSE unit 1/(9-109)
Conductance S CGSE unit 9.101
Magnetic induction T G 104
Magnetic flux Wh Mx 10s
Magnetic field strength A/m Qe 4pu-10-3
Magnetic moment A.m? CGSM unit 103
Magnetization A/m CGSM unit 103
Inductance H cm 109
Luminous intensity cd cd 1
Luminous flux im Im 1
I1lumination 1x
Luminosity Im/m?
Brightness cd/m?

Note. The CGS electric and magnetic units are given here in the

Gaussian system.

Some Extrasystem Units

and Gaussian Systems

29. The Basic Formulas of Electrodynamics in the SI

Electric dipole p
Relation between
Relation between
o', P, and E
Definition of the

Relation between

Gauss theorem for
the vector D

Capacitance of a

Energy of a sys-
tem of charges

Energy of a ca-

Energy density of

1 year =3.141.107 s 1A
{ atm _ { 101.3 kPa 1b

760 mm Hg 1 eV _
1 bar =100 kPa (precisely)
1 mm Hg=133.3 Pa 1 a.m.u _
1 l.atm =101.3 ] I
1 cal =418 1]

=10"% cm
=10-2% ¢cm?

1.6-10-12 erg

931.4 MeV
1 Ci (curie)=23.70-10 dis./S

1.6-10-19 J

1.66-10"24 ¢

of a current car-
rying loop

P in the field B

SI Gaussian system
Strength of the | - E__t 9 E=9
field of a point dngy r? r?
Strength of the E=_9 g Ano
of a plane €0€ €
Potential of the q>=_1_.q_ g=—1
field of a point dney T r
2
Relation between E=—vyo, ¢—¢,= S E,dl
1

N=[pE], W= —pE

P =xgoE P=xE
¢’ =P =ungk, ¢' =P,=xE,
D=gE-+P D=E-+4nP
e=1+% e=1+4nx
Rclation between D —¢ggeE D=¢E
@Dnds=q !&DndS-——lmq
C=gq/v
Capacitance of a C— Eo8S c=55_
plane capacitor d : 4nd
W=1/, 2 qi®:
W=CV?2
w ED pe ED
electric field 2 ~ 8n
j=o0oE
=okE?
Magnetic moment pm=1S Pm =L IS
c
dipole N=[pmB], W= —pmB
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(Continued)

Name

Gaussian system

(COncluded)

Biot and Savart's
law

Induction of the
field produced

(a) by direct
current

(b) in the centre
of a loop

(c) in a solenoid
Definition of tbe
vector H

Circulation of the
vector H in a
constant field

Relation between
J and H

Relation between
p and 7%

Relation between
B and H

Lorentz force
Ampere’s law

Force of inter-
action of paral-
lel currents

Emf of induction

Inductance

Inductance of a
solenoid

Energy of the
magnetic  field
produced by cur-
rent

Energy density of
magnetic field

4n r3
p— Mo 2nl
noor
B=penl
H=B/u,—J

p=1+y

B =pouH
F=g[vB]

dF =1 [dl, B]

XH

B L I[dg, r]
c r
p=-—L 2L
4 r
B:i 2nl
c r
Bz—{!ﬁ—nl
c
H=B—4nJ
@H,dl:fﬂl
p=1-44ny
B=pH
_4
F= p [vB]
dF=ic[d1, B]
_ 1 2L,
T2 d
1 do
Bi=— c dt
¢ L=c®/I
L=4npnV
1 LI
W=a"3
o BH
T 8n

Name

ST

Gaussian system
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Maxwell's equa-
tions in inte-
gral form

Maxwell's equa-
tions in differen-
tial form

Velocity of an
electromagnetic
wave in a me-
dium

Relation between
E and H in an
electromagnetic
wave

Poynting vector

§ Hiar— S (n-+ Dp) dS

V-D=p
VXE=_—_B
V.B=0
VXxH=j+D

v=1/1/ eoiotn

EVee=H Vign

<§Dnds=4n 5 odV
1.
Eydl= —— S BpdS
@B,@S:O

§H1d1=47n5(1'n+%) is

EVe=HVn

c
S=——[EH]
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30. Fundamental Constants

Velocity of light in vacuum
Gravitational constant

Free fall acceleration
(standard value)

Avogadro constant
Molar volume of ideal gas at stp

Loschmidt’s number

Universal gas constant

Boltzmann constant
Faraday constant

Elementary charge

Electron rest mass

Specific charge of electron
Proton rest mass

Specific charge of proton
Stefan-Boltzmann constant
Constant in Wien's displacement law

Planck constant

Rydberg constant

First Bohr radius

Binding energy of electron in a
hydrogen atom

Compton wavelength of an electron
Classical electron radius

Bohr magneton

Nuclear magneton

c=2.998-108 m/s
__f 6.67-107 m?/(kg-s?)
= { 6.67-10~% cm?/(g-s?)

¢=9.807 m/s?

N 4=06.023-1023 mol-!

Vo=22.4 1/mol

_f 2.69.10% m=3
L { 2.69-101 cm™3
314 1/(K - mol)
314-107 erg/mol
082 1-atm/ mol
1.380-10-23 J/K
1.
5.

‘:u

8.

8.

0.

{ 380-1071¢ erg/K

Fe { 0.965-10% C/kg-equiv.
2.90-10'¢ CGSE/g-equiv.

1.602-10°1® C
{ 4.803-10"1¢ CGSE
{ 0.911-10-% kg

4

I

me= 4 0.911.10-2" g
0.511 MeV
e [ 1.76-10" C/kg
“me | 5.27-107 CGSE/g
1.672.10727 kg
mp=

1.672.10724 g

e _ f 0.959.108 C/kg

mp - { 2.87.101¢ CGSE/g

6=5.67-10"¢ W/(m2.K4)
b=0.29 cm-K
{1.054-10‘34.1-5

h=

1.054-10-27 erg-s
0.659.4071% eV:.s

Sy L —2.07-10% s

R’'=R/[2n¢=1.097-105 cm™
ry=Hh?/me2=0.529-10"% cm
E=me%2n2=13.56 eV

R=

tc="Hh/mc=3.86-10"1 cm
ro—e3/mc?=2.82-10"13 cm
ng= 2‘:: —=0.927-107% erg/G
e

ek
HN = om e

=5.05-10"24 erg/G

(Concluded)

Proton magnetic moment
Neutron magnetic moment

Atomic mass unit

Permittivity of vacuum

Permeability of vacuum

Mp=2.7928 uy
un=~1.913 2954
_ f 1.660-10724 ¢
1 am.u.= { 931.4 MeV
€g=0.885-10"11 F/m
1/dneyg=9-10° m/F
po=1.257-10"¢ H/m
polén =10"7 H/m
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L)

MENDELEEV’S PERIODIC T 174-E OF THE ELEMENTS

§ g . Groups of Elements
A 1 1 111 v | v | [vi_ | vo VIII
H 1 He 2
1 1 Hydrogen Helium
1.00797 4.00260
Li 3 Be 4 5 B 6 C 7 N [ 8 O 9 F Ne 10
11 2 Lithium | Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
6.94 9.0122 10.811 12.01115 14.0067 15.9994 18.9984 20.179
Na 11 Mg 12 13 Al 14 Si 15 P 16 S 17 Cl Ar 18
111 3 Sodium |Magnesium| Aluminium Silicon |Phosphorus Sulphur Chlorine Argon
22.9898 24.305 26.9815 28.086 30.9376 32.064 35.453 39.948
K 19 Ca 20 [(Sc 21 Ti 22 V 23 Cr 24 Mn 25 Fe 26 Co 27 Ni 28
4 Potassium Calcium | Scandium Titanium Vanadium Chromium | Manganese Iron Cobalt Nickel
IV 39.098 40.08 44.956 47.90 50.942 51.996 54.9380 55.847 58.9332 58.71
29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br Kr 36
5 Copper Zinc Gallium | Germanium | Arsenic Selenium Bromine Krypton
63.546 65.38 69.72 72.59 74.9216 78.96 79.904 83.80
Rb 37 Sr 38 Y 39 Zr 40 Nb 41 Mo 42 Tc 43 Ru 44 Rh 45 Pd 46
6 Rubidium Strontium Yttrium Zirconium Niobium Molybdenum | Technetium | Ruthenium | Rhodium | Palladium
v 85.47 87.62 88.906 9122 92.906 95.94 P9 101.07 102.905 106.4
47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 1 Xe 54
7 Silver Cadmium Indium . Tin Antimony Tellurium Iodine Xenon
107.868 112.40 114.82 118.69 121.75 127.60 126.9045 131.30
Cs 55 Ba 56 |La 57 (x| Hf 72|Ta 73 W 74 Re 75 Os 76 |Ir 77 (Pt 78
8 Cesium Barium |Lanthanum ; Hafnium | Tantalum Tungsten Rhenium Osmium Iridium Platinum
VI 132.905 137.34 138.91 0 178.49 180.948 183.85 186.2 190.2 192.2 196.09
79 Au 80 Hg 81 Tl 82 Pb 83 Bi 84 Po 85 At Rn 86
9 Gold Mercury Thallium Lead Bismuth Polonium Astatine Radon
196.967 200.59 204.37 207.19 208.980 [209] [210] [222]
Fr 87 Ra 88 Ac 89 :;Ku 104 105
VII| 10 Francium Radium [Actinium ?Kurchatovium
[223]) 226.0254 [227] 2| 1261}
* LANTHANI DES
Ce 58|/Pr 59 Nd 60 Pm 61 Sm 62|Eu 63 |Gd 64 Tb 65 Dy 66 Ho 67 |Er 68 |Tm 69 |Yb 70 |[Lu 71
Cerium |Praseodymium Neod ymium|Promethium|Samarium|Europium|Gadoliniuza Terbium |Dysprosium | Holmium | Erbium | Thulium |Ytterbium | Lutetium
140.12 140.907 144.24 [145} 150.35 151.96 157.25 158.925 162.50 164.930 167.26 168.934 173.04 174.97
*% ACTINI DES
Th 90 |Pa 91 U 92 Np 93 Pu 94 \Am 95 |Cm 96 Bk 97 |Cf 98 |Es 99 [Fm 100{Md 101 (No)102 Lr 103
Thorium| Protactinium | Uranium Neptunjum | Plutonjum|Americium | Curium Berkelium |Californium{Einsteinium| Fermium |Mendelevium| Nobelium){L.awrencium
232.038 |231.0359 238.03  |[237] (244] [243] (247} [247] (251) [254] (257} [258] [255) [256]




ELEMENTARY | PARTICLES
| JSOTOPIC _ |@
MASS ;
| CHARGES SPIN S PRINCIPAL
PARTICLE SYMBOL* MEAN LIFE, SPIN S2a DECAY
MeV m, s ! h 0 L B T 1, |5z MODE
Photon Y 0 0 o 1 0 0 0
% Neutrino v b 0 0 o [ %) 0 + 0
@) §
E Electron e- et 0,511 1 o : Y2 -1 +1 0
b
m y ‘
=i Muon W pt 105,66 206,77 22107 | 2 -1 +1 0 B € vy 49
Pions w T 139,6 273,2 2,55-10°° 0 +1 0 0 1 +1 0 T Pty
o 135,0 264,2 2-10 0 0 0 0 1 0 0 2y
% Kaons { K* k- | 4938 96,3 1,23-10°8 0 “ 0 0 PR VR R
2 X° P 498,0 974,5 10710-10"8 0 0 0 0 Ly ~1a +1 k% 2n, nev
p> 10719
Eta meson 1 548,8 1074 24-10 0 0 0 0 0 0 0 n—2Y, 3n
Proton P P 938,26 1836,1 o 2 +1 0 +1 %) +1p 0
Neutron n F 939,55 1838,6 1-107 12 0 0 +1 %) -2 0 n—sp+ e,
Lambda hyperon A® A? 1115,4 2182,8 2,6-107° P 0 0 + 0 0 -1 Alp pn-
w
5 £t 3 1189,4 2328 038107 Y2 + 0 +1 1 +1 -L ] 3N
: Sigma hyperons 3” 3t 1197 2342 16107 2 ~1 0 +1 1 -1 -1 $en 4
<
= 30 50 1192 2333 <107 2 0 0 +1 1 0 S 1
=- z+ 1321 2585 17-10™° 1 -1 0 +1 9 -l -2 8270 n-
Xi hyperons =0 z0 1314 2572 3.10° ‘ 1/2 0 0 +1 V2 +l2 -2 2%.A0, 0
Omega hyperon Q aQ* 1675 3278 ~107" : 372 -1 0 + 0 0 -3 Q—2+n, A% K-
* Symbols on the right-hand side denote antiparticles ! Note. Particles and corresponding antiparticles have the identical values of mass, mean life,

spin, and isotopic spin T, while their electric Q, lepton L, and baryon B charges, projections
of isotopic spin T,, and strangeness S, have the values that are opposite in sign.




